最近从目标检测和分类转到了做OCR,什么都不太懂,只能一点一点的去理解:

文中需要学习的知识点:

Sequence to Sequence Learning with Neural Networks

sequence to sequence model小记

Beam Search Algorithm

理解LSTM(通俗易懂版)

Thin Plate Spline (薄板样条函数)

薄板样条函数(Thin plate splines)的讨论与分析

Position Embedding

什么是Attention

 

文中提到的论文:

1.《An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition》,即CRNN网络;

2.《spatial transformer networks》,解释了什么是STN;

3.《Neural Machine Translation by Jointly Learning to Align and Translate》,能做到focus和这个目标最相关的输入;

4.《Attention-based models for speech recognition》,介绍了Attention在语音识别中的应用;

 

别人对该文章的理解:

ASTER_An Attentional Scene Text Recognizer with Flexible Rectification

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐