机器学习day4支持向量机SVM原理篇之学过高中数学就能看懂)
依旧是,简略数学推导只讲原理只讲应用毕竟我们又不是去做一个数学上的创新或者叫算法上的创新能够将真正经过市场检验过的需求进行满足即可基本原理,是什么是SVM向量机的核心目标是对一组数据进行分类处理先从二分类开始,依旧以识别手写1-9为例原理可视化展示而有一个大侠出招了,将所有球振起,从空间上选择了一个最好的平面去分割再之后,这些球叫做,棍子叫做, 找到最大间隙的叫做,拍桌子叫做那张纸叫做。想要让数据
依旧是,简略数学推导
只讲原理
只讲应用
毕竟我们又不是去做一个数学上的创新或者叫算法上的创新
能够将真正经过市场检验过的需求进行满足即可
基本原理,是什么是SVM
向量机的核心目标是对一组数据进行分类处理
先从二分类开始,依旧以识别手写1-9为例
手写数字识别:
- 假设你想教计算机识别手写数字(0-9)。每个数字都是一个图像,可以看作是一个高维空间中的点(每个像素点的亮度作为一个维度)。
- 训练SVM:
- 收集大量手写数字的图片,每张图片标注了它代表的数字。
- SVM 会尝试找到一个超平面(在这种情况下,是一个高维空间的决策边界),使数字0和数字1(或任何其他数字)之间的间隔最大化。
- 这个决策边界就是SVM找到的线性分类器。支持向量是那些最接近这个边界的数字图像。
原理可视化展示
https://www.youtube.com/watch?v=Q7vT0--5VII
SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。这个间隙就是球到棍的距离
而有一个大侠出招了,将所有球振起,从空间上选择了一个最好的平面去分割
再之后,这些球叫做data,棍子叫做classifier, 找到最大间隙的trick叫做optimization,拍桌子叫做kernelling, 那张纸叫做hyperplane。
想要让数据飞起,我们需要的东西就是核函数(kernel),用于切分小球的纸,就是超平面
可以看出,问题是从线性可分延伸到线性不可分的
接下来是数学推导(超简略版)
从一个直线函数开始
求出一个决策直线
由上面的图像可知,不难理解
二分类一个直线的直线就是它的法向量(垂直目标直线的直线
然后拓展到n维即可
然后是如何评判分类的好坏,因为法向量也可以不止一个吧
我们要找到能够最好的评分两类数据的线
此时,求解超平面的问题就变成了求解分类间隔W最大化的为题。W的最大化也就是d最大化的。
求最值问题,我们先需要一个约束条件
而它的约束条件是什么,怎么表示,有很多
然后就是转化,求解,验证(省略一万字)
不同的解法中,有一个非常有名的解法
SMO算法求解(也省略一万字)
在结果完全相同的同时,SMO算法的求解时间短很多
接下来,把向量机放到我们前几天的手写识别中,
代码和kNN的实现是差不多的,就是换了个分类器而已
代码都放在github了https://github.com/letteryzzm/Machine-Learning
# -*-coding:utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import random
import os
class optStruct:
"""
数据结构,维护所有需要操作的值
Parameters:
dataMatIn - 数据矩阵
classLabels - 数据标签
C - 松弛变量
toler - 容错率
kTup - 包含核函数信息的元组,第一个参数存放核函数类别,第二个参数存放必要的核函数需要用到的参数
"""
def __init__(self, dataMatIn, classLabels, C, toler, kTup):
self.X = dataMatIn #数据矩阵
self.labelMat = classLabels #数据标签
self.C = C #松弛变量
self.tol = toler #容错率
self.m = np.shape(dataMatIn)[0] #数据矩阵行数
self.alphas = np.mat(np.zeros((self.m,1))) #根据矩阵行数初始化alpha参数为0
self.b = 0 #初始化b参数为0
self.eCache = np.mat(np.zeros((self.m,2))) #根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
self.K = np.mat(np.zeros((self.m,self.m))) #初始化核K
for i in range(self.m): #计算所有数据的核K
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
def kernelTrans(X, A, kTup):
"""
通过核函数将数据转换更高维的空间
Parameters:
X - 数据矩阵
A - 单个数据的向量
kTup - 包含核函数信息的元组
Returns:
K - 计算的核K
"""
m,n = np.shape(X)
K = np.mat(np.zeros((m,1)))
if kTup[0] == 'lin': K = X * A.T #线性核函数,只进行内积。
elif kTup[0] == 'rbf': #高斯核函数,根据高斯核函数公式进行计算
for j in range(m):
deltaRow = X[j,:] - A
K[j] = deltaRow*deltaRow.T
K = np.exp(K/(-1*kTup[1]**2)) #计算高斯核K
else: raise NameError('核函数无法识别')
return K #返回计算的核K
def loadDataSet(fileName):
"""
读取数据
Parameters:
fileName - 文件名
Returns:
dataMat - 数据矩阵
labelMat - 数据标签
"""
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines(): #逐行读取,滤除空格等
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])]) #添加数据
labelMat.append(float(lineArr[2])) #添加标签
return dataMat,labelMat
def calcEk(oS, k):
"""
计算误差
Parameters:
oS - 数据结构
k - 标号为k的数据
Returns:
Ek - 标号为k的数据误差
"""
fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJrand(i, m):
"""
函数说明:随机选择alpha_j的索引值
Parameters:
i - alpha_i的索引值
m - alpha参数个数
Returns:
j - alpha_j的索引值
"""
j = i #选择一个不等于i的j
while (j == i):
j = int(random.uniform(0, m))
return j
def selectJ(i, oS, Ei):
"""
内循环启发方式2
Parameters:
i - 标号为i的数据的索引值
oS - 数据结构
Ei - 标号为i的数据误差
Returns:
j, maxK - 标号为j或maxK的数据的索引值
Ej - 标号为j的数据误差
"""
maxK = -1; maxDeltaE = 0; Ej = 0 #初始化
oS.eCache[i] = [1,Ei] #根据Ei更新误差缓存
validEcacheList = np.nonzero(oS.eCache[:,0].A)[0] #返回误差不为0的数据的索引值
if (len(validEcacheList)) > 1: #有不为0的误差
for k in validEcacheList: #遍历,找到最大的Ek
if k == i: continue #不计算i,浪费时间
Ek = calcEk(oS, k) #计算Ek
deltaE = abs(Ei - Ek) #计算|Ei-Ek|
if (deltaE > maxDeltaE): #找到maxDeltaE
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej #返回maxK,Ej
else: #没有不为0的误差
j = selectJrand(i, oS.m) #随机选择alpha_j的索引值
Ej = calcEk(oS, j) #计算Ej
return j, Ej #j,Ej
def updateEk(oS, k):
"""
计算Ek,并更新误差缓存
Parameters:
oS - 数据结构
k - 标号为k的数据的索引值
Returns:
无
"""
Ek = calcEk(oS, k) #计算Ek
oS.eCache[k] = [1,Ek] #更新误差缓存
def clipAlpha(aj,H,L):
"""
修剪alpha_j
Parameters:
aj - alpha_j的值
H - alpha上限
L - alpha下限
Returns:
aj - 修剪后的alpah_j的值
"""
if aj > H:
aj = H
if L > aj:
aj = L
return aj
def innerL(i, oS):
"""
优化的SMO算法
Parameters:
i - 标号为i的数据的索引值
oS - 数据结构
Returns:
1 - 有任意一对alpha值发生变化
0 - 没有任意一对alpha值发生变化或变化太小
"""
#步骤1:计算误差Ei
Ei = calcEk(oS, i)
#优化alpha,设定一定的容错率。
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
#使用内循环启发方式2选择alpha_j,并计算Ej
j,Ej = selectJ(i, oS, Ei)
#保存更新前的aplpha值,使用深拷贝
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
#步骤2:计算上下界L和H
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L == H:
print("L==H")
return 0
#步骤3:计算eta
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
if eta >= 0:
print("eta>=0")
return 0
#步骤4:更新alpha_j
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
#步骤5:修剪alpha_j
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
#更新Ej至误差缓存
updateEk(oS, j)
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
print("alpha_j变化太小")
return 0
#步骤6:更新alpha_i
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
#更新Ei至误差缓存
updateEk(oS, i)
#步骤7:更新b_1和b_2
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
#步骤8:根据b_1和b_2更新b
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1
else:
return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin',0)):
"""
完整的线性SMO算法
Parameters:
dataMatIn - 数据矩阵
classLabels - 数据标签
C - 松弛变量
toler - 容错率
maxIter - 最大迭代次数
kTup - 包含核函数信息的元组
Returns:
oS.b - SMO算法计算的b
oS.alphas - SMO算法计算的alphas
"""
oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup) #初始化数据结构
iter = 0 #初始化当前迭代次数
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
alphaPairsChanged = 0
if entireSet: #遍历整个数据集
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS) #使用优化的SMO算法
print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
iter += 1
else: #遍历非边界值
nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] #遍历不在边界0和C的alpha
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
iter += 1
if entireSet: #遍历一次后改为非边界遍历
entireSet = False
elif (alphaPairsChanged == 0): #如果alpha没有更新,计算全样本遍历
entireSet = True
print("迭代次数: %d" % iter)
return oS.b,oS.alphas #返回SMO算法计算的b和alphas
def img2vector(filename):
"""
将32x32的二进制图像转换为1x1024向量。
Parameters:
filename - 文件名
Returns:
returnVect - 返回的二进制图像的1x1024向量
"""
returnVect = np.zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def loadImages(dirName):
"""
加载图片
Parameters:
dirName - 文件夹的名字
Returns:
trainingMat - 数据矩阵
hwLabels - 数据标签
"""
from os import listdir
hwLabels = []
trainingFileList = listdir(dirName)
m = len(trainingFileList)
trainingMat = np.zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
if classNumStr == 9: hwLabels.append(-1)
else: hwLabels.append(1)
trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
return trainingMat, hwLabels
def testDigits(kTup=('rbf', 10)):
"""
测试函数
Parameters:
kTup - 包含核函数信息的元组
Returns:
无
"""
training_path = r'F:\AI\machie_learning\Machine-Learning-lettery\kNN\3.数字识别\trainingDigits'
test_path = r'F:\AI\machie_learning\Machine-Learning-lettery\kNN\3.数字识别\testDigits' # 假设测试数据在同一个目录下
dataArr, labelArr = loadImages(training_path)
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10, kTup)
datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
svInd = np.nonzero(alphas.A>0)[0]
sVs=datMat[svInd]
labelSV = labelMat[svInd];
print("支持向量个数:%d" % np.shape(sVs)[0])
m,n = np.shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b
if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
print("训练集错误率: %.2f%%" % (float(errorCount)/m))
# 使用绝对路径加载测试数据
dataArr, labelArr = loadImages(test_path)
errorCount = 0
datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
m,n = np.shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b
if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
print("测试集错误率: %.2f%%" % (float(errorCount)/m))
if __name__ == '__main__':
testDigits()
更多推荐
所有评论(0)