文章目录

一、Hive 执行过程概述

1、概述

(1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator,JoinOperator 等

(2)操作符 Operator 是 Hive 的最小处理单元

(3)每个操作符代表一个 HDFS 操作或者 MapReduce 作业

(4)Hive 通过 ExecMapper 和 ExecReducer 执行 MapReduce 程序,执行模式有本地模式和分布式两种

2、Hive 操作符列表

3、Hive 编译器的工作职责

(1)Parser:将 HQL 语句转换成抽象语法树(AST:Abstract Syntax Tree)

(2)Semantic Analyzer:将抽象语法树转换成查询块

(3)Logic Plan Generator:将查询块转换成逻辑查询计划

(4)Logic Optimizer:重写逻辑查询计划,优化逻辑执行计划

(5)Physical Plan Gernerator:将逻辑计划转化成物理计划(MapReduce Jobs)

(6)Physical Optimizer:选择最佳的 Join 策略,优化物理执行计划

4、优化器类型

  • 上表中 ① 的优化目的都是尽量将任务合并到一个 Job 中,以减少 Job 数量
  • ② 的优化目的是尽量减少 shuffle 数据量。

二、JOIN

1、对于 JOIN 操作
SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON pv.userid = u.userid;

2、实现过程

Map:

1、以 JOIN ON 条件中的列作为 Key,如果有多个列,则 Key 是这些列的组合

2、以 JOIN 之后所关心的列作为 Value,当有多个列时,Value 是这些列的组合。在 Value 中还会包含表的 Tag 信息,用于标明此 Value 对应于哪个表

3、按照 Key 进行排序

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

需要这份系统化资料的朋友,可以戳这里获取

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐