<p>抱歉,HTML本身不支持摄像头操作或图像识别,需要使用JavaScript或其他编程语言来实现这些功能。以下是一个使用JavaScript和HTML5中的<code>&lt;input&gt;</code>元素实现调用摄像头拍照或上传本地图片的示例代码:</p>
<p>```html
<!DOCTYPE html></p>
<html>
  <head>
    <meta charset="UTF-8">
    <title>Camera and OCR Example</title>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/mobilenet"></script>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/knn-classifier"></script>
  </head>
  <body>
    <h1>Camera and OCR Example</h1>
    <div>
      <video id="video" width="640" height="480" autoplay></video>
      <button id="startButton">Take Photo</button>
      <input type="file" id="imageLoader" name="imageLoader">
    </div>
    <div>
      <canvas id="canvas" width="640" height="480"></canvas>
    </div>
    <div>
      <h2>OCR Results:</h2>
      <p id="ocrResults"></p>
    </div>
    <script>
      const video = document.getElementById('video');
      const canvas = document.getElementById('canvas');
      const imageLoader = document.getElementById('imageLoader');
      const startButton = document.getElementById('startButton');
      const ocrResults = document.getElementById('ocrResults');
      
<pre><code>  // 设置摄像头
  navigator.mediaDevices.getUserMedia({ video: true })
    .then((stream) =&gt; {
      video.srcObject = stream;
    })
    .catch((error) =&gt; {
      console.error(error);
    });
  
  // 当点击&quot;Take Photo&quot;按钮时,将当前视频帧转换为图像,并进行OCR识别
  startButton.addEventListener(&#39;click&#39;, () =&gt; {
    canvas.getContext(&#39;2d&#39;).drawImage(video, 0, 0, canvas.width, canvas.height);
    recognizeImage(canvas.toDataURL());
  });
  
  // 当用户选择本地图像文件时,将其转换为图像,并进行OCR识别
  imageLoader.addEventListener(&#39;change&#39;, (event) =&gt; {
    const file = event.target.files[0];
    const reader = new FileReader();
    reader.onload = (event) =&gt; {
      recognizeImage(event.target.result);
    };
    reader.readAsDataURL(file);
  });
  
  // 使用TensorFlow.js进行OCR识别
  async function recognizeImage(imageUrl) {
    ocrResults.innerHTML = &#39;Loading OCR model...&#39;;
    
    // 加载预训练模型和分类器
    const mobilenet = await mobilenet.load();
    const classifier = await knnClassifier.create();
    const model = await tf.loadGraphModel(&#39;model.json&#39;);
    
    // 将图像转换为Tensor对象,并预处理
    const img = new Image();
    img.src = imageUrl;
    await img.decode();
    const tensor = tf.browser.fromPixels(img)
      .resizeNearestNeighbor([224, 224])
      .toFloat()
      .div(tf.scalar(255))
      .expandDims();
    
    // 使用预训练模型提取特征向量,并使用分类器进行分类
    const features = await mobilenet.infer(tensor, true);
    const logits =
</code></pre>
Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐