严格证明Hopfield神经网络的稳定性
研究如下的Hopfield神经网络Cidxi(t)dt=−1Rxi(t)+∑j=1nTijgj(xj(t))+Ii, (i=1,2,⋯ ,n)(1)C_{i} \frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}=-\frac{1}{R} x_{i}(t)+\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(t)\right)+I_{i},
研究如下的Hopfield神经网络
Cidxi(t)dt=−1Rxi(t)+∑j=1nTijgj(xj(t))+Ii, (i=1,2,⋯ ,n)(1) C_{i} \frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}=-\frac{1}{R} x_{i}(t)+\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(t)\right)+I_{i},\;(i=1,2, \cdots, n) \tag{1} Cidtdxi(t)=−R1xi(t)+j=1∑nTijgj(xj(t))+Ii,(i=1,2,⋯,n)(1)
其中 T=[Tij]n×nT=[T_{ij}]_{n×n}T=[Tij]n×n 是网络连接权系数矩阵,Ci>0,Ri>0C_i>0,R_i>0Ci>0,Ri>0 及 IiI_iIi 为常数,gi(⋅)g_i(\cdot)gi(⋅) 为可微的严格单调上升的有界函数,且 liml→+∞gi(s)=±1\lim\limits_{l\rightarrow +\infty}g_i(s)=\pm1l→+∞limgi(s)=±1
我们称 (x1∗,x2∗,...,xn∗)(x_1^*,x_2^*,...,x_n^*)(x1∗,x2∗,...,xn∗) 为网络(1)的平衡态,若 (x1∗,x2∗,...,xn∗)(x_1^*,x_2^*,...,x_n^*)(x1∗,x2∗,...,xn∗) 满足:
−1Rxi∗(t)+∑j=1nTijgj(xj∗(t))+Ii=0, (i=1,2,⋯ ,n) -\frac{1}{R} x_{i}^*(t)+\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}^*(t)\right)+I_{i}=0,\;(i=1,2, \cdots, n) −R1xi∗(t)+j=1∑nTijgj(xj∗(t))+Ii=0,(i=1,2,⋯,n)
证明
定理2. 若连接权系数矩阵T是对称的,则网络(1)是稳定的.
证明. 我们先证明网络的一切解有界.由式(1)有
xi(t)=xi(0)e−1CiRi+1Ci∫0te−1CiRi(t−s)(∑j=1nTijgj(xj(s))+Ii)ds x_{i}(t)=x_{i}(0) \mathrm{e}^{-\frac{1}{C_{i} R_{i}}}+\frac{1}{C_{i}} \int_{0}^{t} \mathrm{e}^{-\frac{1}{C_{i} R_{i}}(t-s)}\left(\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(s)\right)+I_{i}\right) \mathrm{d} s xi(t)=xi(0)e−CiRi1+Ci1∫0te−CiRi1(t−s)(j=1∑nTijgj(xj(s))+Ii)ds
于是,对于一切 t≥0t\ge0t≥0 有
∣xi(t)∣⩽∣xi(0)∣e−1CiRi+1Ci∫0te−1CiRi(t−s)∣∑j=1nTijgj(xj(s))+Ii∣ds⩽∣xi(0)∣e−1CiRi+Ri(∑j=1n∣Tij∣+Ii)⩽∣xi(0)∣+Ri(∑j=1n∣Tij∣+Ii),(i=1,2,⋯ ,n) \begin{aligned} \left|x_{i}(t)\right| & \leqslant\left|x_{i}(0)\right| \mathrm{e}^{-\frac{1}{C_{i} R_{i}}}+\frac{1}{C_{i}} \int_{0}^{t} \mathrm{e}^{-\frac{1}{C_{i} R_{i}}(t-s)}\left|\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(s)\right)+I_{i}\right| \mathrm{d} s \\ & \leqslant\left|x_{i}(0)\right| \mathrm{e}^{-\frac{1}{C_{i} R_{i}} }+R_{i}\left(\sum_{j=1}^{n}\left|T_{i j}\right|+I_{i}\right) \\ & \leqslant\left|x_{i}(0)\right|+R_{i}\left(\sum_{j=1}^{n}\left|T_{i j}\right|+I_{i}\right),(i=1,2, \cdots, n) \end{aligned} ∣xi(t)∣⩽∣xi(0)∣e−CiRi1+Ci1∫0te−CiRi1(t−s)∣∣∣∣∣j=1∑nTijgj(xj(s))+Ii∣∣∣∣∣ds⩽∣xi(0)∣e−CiRi1+Ri(j=1∑n∣Tij∣+Ii)⩽∣xi(0)∣+Ri(j=1∑n∣Tij∣+Ii),(i=1,2,⋯,n)
构造Hopfield能量函数
E(x)=−12∑i=1n∑j=1nTijvivj−∑i=1nIivi+∑i=1n1Ri∫0vigi−1(θ)dθ E(x)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} T_{i j} v_{i} v_{j}-\sum_{i=1}^{n} I_{i} v_{i}+\sum_{i=1}^{n} \frac{1}{R_{i}} \int_{0}^{v_{i}} g_{i}^{-1}(\theta) \mathrm{d} \theta E(x)=−21i=1∑nj=1∑nTijvivj−i=1∑nIivi+i=1∑nRi1∫0vigi−1(θ)dθ
其中 vi=gi(xi)v_i=g_i(x_i)vi=gi(xi). 计算函数E沿着网络(1)的轨线的导数
dE(x(t))dt∣(1)=−12∑i=1n∑j=1nTij(dvi(t)dtvj(t)+vi(t)dvj(t)dt)−∑i=1n(Ii+1Rixi(t))dvi(t)dt=−∑i=1ndvi(t)dt(−1Rixi(t)+∑j=1nTijgj(xj(t))+Ii)=−∑i=1nCidgi(xi(t))dxi(t)(dxi(t)dt)2⩽0 \begin{aligned} \frac{\mathrm{d} E\left(x(t)\right)}{\mathrm{d} t} &\left.\right|_{(1)}=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} T_{i j}\left(\frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t} v_{j}(t)+v_{i}(t) \frac{\mathrm{d} v_{j}(t)}{\mathrm{d} t}\right) \\ &-\sum_{i=1}^{n}\left(I_{i}+\frac{1}{R_{i}} x_{i}(t)\right) \frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t} \\ =&-\sum_{i=1}^{n} \frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t}\left(-\frac{1}{R_{i}} x_{i}(t)+\sum_{j=1}^{n} T_{ij} g_{j}\left(x_{j}(t)\right)+I_{i}\right) \\ =&-\sum_{i=1}^{n} C_{i} \frac{\mathrm{d} g_{i}\left(x_{i}(t)\right)}{\mathrm{d} x_{i}(t)}\left(\frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}\right)^{2} \\ \leqslant & 0 \end{aligned} dtdE(x(t))==⩽∣(1)=−21i=1∑nj=1∑nTij(dtdvi(t)vj(t)+vi(t)dtdvj(t))−i=1∑n(Ii+Ri1xi(t))dtdvi(t)−i=1∑ndtdvi(t)(−Ri1xi(t)+j=1∑nTijgj(xj(t))+Ii)−i=1∑nCidxi(t)dgi(xi(t))(dtdxi(t))20
显然,
dE(x(t))dt∣(1)=0,当且仅当dx(t)dt=0 \left.\frac{dE\left(x(t)\right)}{dt}\right|_{(1)}=0,\quad 当且仅当\frac{dx(t)}{dt}=0 dtdE(x(t))∣∣∣∣(1)=0,当且仅当dtdx(t)=0
更多推荐
所有评论(0)