研究如下的Hopfield神经网络
Cidxi(t)dt=−1Rxi(t)+∑j=1nTijgj(xj(t))+Ii,  (i=1,2,⋯ ,n)(1) C_{i} \frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}=-\frac{1}{R} x_{i}(t)+\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(t)\right)+I_{i},\;(i=1,2, \cdots, n) \tag{1} Cidtdxi(t)=R1xi(t)+j=1nTijgj(xj(t))+Ii,(i=1,2,,n)(1)

其中 T=[Tij]n×nT=[T_{ij}]_{n×n}T=[Tij]n×n 是网络连接权系数矩阵,Ci>0,Ri>0C_i>0,R_i>0Ci>0,Ri>0IiI_iIi 为常数,gi(⋅)g_i(\cdot)gi() 为可微的严格单调上升的有界函数,且 lim⁡l→+∞gi(s)=±1\lim\limits_{l\rightarrow +\infty}g_i(s)=\pm1l+limgi(s)=±1

我们称 (x1∗,x2∗,...,xn∗)(x_1^*,x_2^*,...,x_n^*)(x1,x2,...,xn) 为网络(1)的平衡态,若 (x1∗,x2∗,...,xn∗)(x_1^*,x_2^*,...,x_n^*)(x1,x2,...,xn) 满足:
−1Rxi∗(t)+∑j=1nTijgj(xj∗(t))+Ii=0,  (i=1,2,⋯ ,n) -\frac{1}{R} x_{i}^*(t)+\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}^*(t)\right)+I_{i}=0,\;(i=1,2, \cdots, n) R1xi(t)+j=1nTijgj(xj(t))+Ii=0,(i=1,2,,n)

证明

定理2. 若连接权系数矩阵T是对称的,则网络(1)是稳定的.
证明. 我们先证明网络的一切解有界.由式(1)有
xi(t)=xi(0)e−1CiRi+1Ci∫0te−1CiRi(t−s)(∑j=1nTijgj(xj(s))+Ii)ds x_{i}(t)=x_{i}(0) \mathrm{e}^{-\frac{1}{C_{i} R_{i}}}+\frac{1}{C_{i}} \int_{0}^{t} \mathrm{e}^{-\frac{1}{C_{i} R_{i}}(t-s)}\left(\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(s)\right)+I_{i}\right) \mathrm{d} s xi(t)=xi(0)eCiRi1+Ci10teCiRi1(ts)(j=1nTijgj(xj(s))+Ii)ds

于是,对于一切 t≥0t\ge0t0
∣xi(t)∣⩽∣xi(0)∣e−1CiRi+1Ci∫0te−1CiRi(t−s)∣∑j=1nTijgj(xj(s))+Ii∣ds⩽∣xi(0)∣e−1CiRi+Ri(∑j=1n∣Tij∣+Ii)⩽∣xi(0)∣+Ri(∑j=1n∣Tij∣+Ii),(i=1,2,⋯ ,n) \begin{aligned} \left|x_{i}(t)\right| & \leqslant\left|x_{i}(0)\right| \mathrm{e}^{-\frac{1}{C_{i} R_{i}}}+\frac{1}{C_{i}} \int_{0}^{t} \mathrm{e}^{-\frac{1}{C_{i} R_{i}}(t-s)}\left|\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(s)\right)+I_{i}\right| \mathrm{d} s \\ & \leqslant\left|x_{i}(0)\right| \mathrm{e}^{-\frac{1}{C_{i} R_{i}} }+R_{i}\left(\sum_{j=1}^{n}\left|T_{i j}\right|+I_{i}\right) \\ & \leqslant\left|x_{i}(0)\right|+R_{i}\left(\sum_{j=1}^{n}\left|T_{i j}\right|+I_{i}\right),(i=1,2, \cdots, n) \end{aligned} xi(t)xi(0)eCiRi1+Ci10teCiRi1(ts)j=1nTijgj(xj(s))+Iidsxi(0)eCiRi1+Ri(j=1nTij+Ii)xi(0)+Ri(j=1nTij+Ii),(i=1,2,,n)

构造Hopfield能量函数
E(x)=−12∑i=1n∑j=1nTijvivj−∑i=1nIivi+∑i=1n1Ri∫0vigi−1(θ)dθ E(x)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} T_{i j} v_{i} v_{j}-\sum_{i=1}^{n} I_{i} v_{i}+\sum_{i=1}^{n} \frac{1}{R_{i}} \int_{0}^{v_{i}} g_{i}^{-1}(\theta) \mathrm{d} \theta E(x)=21i=1nj=1nTijvivji=1nIivi+i=1nRi10vigi1(θ)dθ

其中 vi=gi(xi)v_i=g_i(x_i)vi=gi(xi). 计算函数E沿着网络(1)的轨线的导数
dE(x(t))dt∣(1)=−12∑i=1n∑j=1nTij(dvi(t)dtvj(t)+vi(t)dvj(t)dt)−∑i=1n(Ii+1Rixi(t))dvi(t)dt=−∑i=1ndvi(t)dt(−1Rixi(t)+∑j=1nTijgj(xj(t))+Ii)=−∑i=1nCidgi(xi(t))dxi(t)(dxi(t)dt)2⩽0 \begin{aligned} \frac{\mathrm{d} E\left(x(t)\right)}{\mathrm{d} t} &\left.\right|_{(1)}=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} T_{i j}\left(\frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t} v_{j}(t)+v_{i}(t) \frac{\mathrm{d} v_{j}(t)}{\mathrm{d} t}\right) \\ &-\sum_{i=1}^{n}\left(I_{i}+\frac{1}{R_{i}} x_{i}(t)\right) \frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t} \\ =&-\sum_{i=1}^{n} \frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t}\left(-\frac{1}{R_{i}} x_{i}(t)+\sum_{j=1}^{n} T_{ij} g_{j}\left(x_{j}(t)\right)+I_{i}\right) \\ =&-\sum_{i=1}^{n} C_{i} \frac{\mathrm{d} g_{i}\left(x_{i}(t)\right)}{\mathrm{d} x_{i}(t)}\left(\frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}\right)^{2} \\ \leqslant & 0 \end{aligned} dtdE(x(t))==(1)=21i=1nj=1nTij(dtdvi(t)vj(t)+vi(t)dtdvj(t))i=1n(Ii+Ri1xi(t))dtdvi(t)i=1ndtdvi(t)(Ri1xi(t)+j=1nTijgj(xj(t))+Ii)i=1nCidxi(t)dgi(xi(t))(dtdxi(t))20

显然,
dE(x(t))dt∣(1)=0,当且仅当dx(t)dt=0 \left.\frac{dE\left(x(t)\right)}{dt}\right|_{(1)}=0,\quad 当且仅当\frac{dx(t)}{dt}=0 dtdE(x(t))(1)=0,dtdx(t)=0

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐