1、流程示意图

MapReduce详细工作流程(一)

Untitled

MapReduce详细工作流程(二)

Untitled

2、流程详解

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

3)多个溢出文件会被合并成大的溢出文件

4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

6)ReduceTask会取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

3、注意

Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

缓冲区的大小可以通过参数调整,参数:io.sort.mb默认100M。

4、源码解析流程

context.write(k, NullWritable.get());
output.write(key, value);
collector.collect(key, value,partitioner.getPartition(key, value, partitions));
	HashPartitioner();
collect()
	close()
	collect.flush()
sortAndSpill()
	sort()   QuickSort
mergeParts();
	 file.out
	 file.out.index
collector.close();
Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐