【数据仓库】数据库仓库分层
数据中心的用户希望数据是由他们熟悉的术语表现的。数据集市(Data Mart),也叫数据市场,数据集市就是满足特定的部门或者用户的需求,按照多维的方式进行存储,包括定义维度、需要计算的指标、维度的层次等,生成面向决策分析需求的数据立方体。但是,实际情况下,我们所面临的数据状况很有可能是复杂性高、且层级混乱的,我们可能会做出一套表依赖结构混乱,且出现循环依赖的数据体系,比如下面的右图。该层是在DWD
最近子 处理 数据仓库的东西,由于是前人建设的,更准确的 讲是java开发人员建设的,发现里面的坑不少。原本 数据中台的东西完全可以解耦出来 单独架构,但是java开发人员喜欢耦合在Java应用程序中,数据的收集和分析同在一个应用,这种架构问题显然很大 。连基本的数据层都没分清,以下也是 借鉴网上的 方案,我觉得 分层合理 ,所以贴在这里一起学习。
何为数仓DW
Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,它是一整套包括了etl、调度、建模在内的完整的理论体系。 数据仓库的方案建设的目的,是为前端查询和分析作为基础,主要应用于OLAP(on-line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。目前行业比较流行的有:AWS Redshift,Greenplum,Hive等。 数据仓库并不是数据的最终目的地,而是为数据最终的目的地做好准备,这些准备包含:清洗、转义、分类、重组、合并、拆分、统计等
主要特点
- 面向主题
- 操作型数据库组织面向事务处理任务,而数据仓库中的数据是按照一定的主题域进行组织。
- 主题是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通过与多个操作型信息系统相关。
- 集成
- 需要对源数据进行加工与融合,统一与综合
- 在加工的过程中必须消除源数据的不一致性,以保证数据仓库内的信息时关于整个企业的一致的全局信息。(关联关系)
- 不可修改
- DW中的数据并不是最新的,而是来源于其他数据源
- 数据仓库主要是为决策分析提供数据,涉及的操作主要是数据的查询
- 与时间相关
- 处于决策的需要数据仓库中的数据都需要标明时间属性
与数据库的对比
- DW:专门为数据分析设计的,涉及读取大量数据以了解数据之间的关系和趋势
- 数据库:用于捕获和存储数据
为何要分层
数据仓库中涉及到的问题:
- 为什么要做数据仓库?
- 为什么要做数据质量管理?
- 为什么要做元数据管理?
- 数仓分层中每个层的作用是什么?
在实际的工作中,我们都希望自己的数据能够有顺序地流转,设计者和使用者能够清晰地知道数据的整个声明周期,比如下面左图。
但是,实际情况下,我们所面临的数据状况很有可能是复杂性高、且层级混乱的,我们可能会做出一套表依赖结构混乱,且出现循环依赖的数据体系,比如下面的右图。
为了解决我们可能面临的问题,需要一套行之有效的数据组织、管理和处理方法,来让我们的数据体系更加有序,这就是数据分层。数据分层的好处:
- 清晰数据结构:让每个数据层都有自己的作用和职责,在使用和维护的时候能够更方便和理解
- 复杂问题简化:将一个复杂的任务拆解成多个步骤来分步骤完成,每个层只解决特定的问题
- 统一数据口径:通过数据分层,提供统一的数据出口,统一输出口径
- 减少重复开发:规范数据分层,开发通用的中间层,可以极大地减少重复计算的工作
数据分层
每个公司的业务都可以根据自己的业务需求分层不同的层次;目前比较成熟的数据分层:数据运营层ODS、数据仓库层DW、数据服务层ADS(APP)。
数据运营层ODS
数据运营层:Operation Data Store 数据准备区,也称为贴源层。数据源中的数据,经过抽取、洗净、传输,也就是ETL过程之后进入本层。该层的主要功能:
- ODS是后面数据仓库层的准备区
- 为DWD层提供原始数据
- 减少对业务系统的影响
在源数据装入这一层时,要进行诸如去噪(例如有一条数据中人的年龄是 300 岁,这种属于异常数据,就需要提前做一些处理)、去重(例如在个人资料表中,同一 ID 却有两条重复数据,在接入的时候需要做一步去重)、字段命名规范等一系列操作。 但是为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据也可以,根据业务具体分层的需求来做。
这层的数据是后续数据仓库加工数据的来源。数据来源的方式:
- 业务库
- 经常会使用sqoop来抽取,例如每天定时抽取一次。
- 实时方面,可以考虑用canal监听mysql的binlog,实时接入即可。
- 埋点日志
- 日志一般以文件的形式保存,可以选择用flume定时同步
- 可以用spark streaming或者Flink来实时接入
- kafka也OK
- 消息队列:即来自ActiveMQ、Kafka的数据等。
数据仓库层
数据仓库层从上到下,又可以分为3个层:数据细节层DWD
、数据中间层DWM
、数据服务层DWS
。
数据细节层DWD
数据细节层:data warehouse details,DWD(数据清洗/DWI)
该层是业务层和数据仓库的隔离层,保持和ODS层一样的数据颗粒度;主要是对ODS数据层做一些数据的清洗和规范化的操作,比如去除空数据、脏数据、离群值等。
为了提高数据明细层的易用性,该层通常会才采用一些维度退化方法,将维度退化至事实表中,减少事实表和维表的关联。
数据中间层DWM
数据中间层:Data Warehouse Middle,DWM
该层是在DWD层的数据基础上,对数据做一些轻微的聚合操作,生成一些列的中间结果表,提升公共指标的复用性,减少重复加工的工作。
简答来说,对通用的核心维度进行聚合操作,算出相应的统计指标
数据服务层DWS
数据服务层:Data Warehouse Service,DWS(宽表-用户行为,轻度聚合)
该层是基于DWM上的基础数据,整合汇总成分析某一个主题域的数据服务层,一般是宽表,用于提供后续的业务查询,OLAP分析,数据分发等。
一般来说,该层的数据表会相对较少;一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。
- 用户行为,轻度聚合对DWD
- 主要对ODS/DWD层数据做一些轻度的汇总。
数据应用层ADS
数据应用层:Application Data Service,ADS(APP/DAL/DF)-出报表结果
该层主要是提供给数据产品和数据分析使用的数据,一般会存放在ES、Redis、PostgreSql等系统中供线上系统使用;也可能存放在hive或者Druid中,供数据分析和数据挖掘使用,比如常用的数据报表就是存在这里的。
事实表 Fact Table
事实表是指存储有事实记录的表,比如系统日志、销售记录等。事实表的记录在不断地增长,比如电商的商品订单表,就是类似的情况,所以事实表的体积通常是远大于其他表。
维表层Dimension(DIM)
维度表(Dimension Table)或维表,有时也称查找表(Lookup Table),是与事实表相对应的一种表;它保存了维度的属性值,可以跟事实表做关联,相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。维度表主要是包含两个部分:
- 高基数维度数据:一般是用户资料表、商品资料表类似的资料表,数据量可能是千万级或者上亿级别
- 低基数维度数据:一般是配置表,比如枚举字段对应的中文含义,或者日期维表等;数据量可能就是个位数或者几千几万。
临时表TMP
每一层的计算都会有很多临时表,专设一个DWTMP层来存储我们数据仓库的临时表
数据集市
狭义ADS层;广义上指hadoop从DWD DWS ADS 同步到RDS的数据
数据集市(Data Mart),也叫数据市场,数据集市就是满足特定的部门或者用户的需求,按照多维的方式进行存储,包括定义维度、需要计算的指标、维度的层次等,生成面向决策分析需求的数据立方体。
从范围上来说,数据是从企业范围的数据库、数据仓库,或者是更加专业的数据仓库中抽取出来的。数据中心的重点就在于它迎合了专业用户群体的特殊需求,在分析、内容、表现,以及易用方面。数据中心的用户希望数据是由他们熟悉的术语表现的
更多推荐
所有评论(0)