1. yolov8n在train时,出现box_loss、cls_loss、dfl_loss为nan

解决办法:

model.train设置amp=False

    args = dict(
        model='cfg/models/conv/xx.yaml',
        data='cfg/datasets/xx.yaml',
        imgsz=640,
        epochs=300,
        batch=8,
        workers=0,
        device=0,
        optimizer='SGD',  # 这里可以使用两个优化器SGD 和AdamW,其它的可能会导致模型无法收敛
        amp=False,     # 关掉amp,也就是让amp = False
    )
2. yolov8n在train时,出现Box(P R mAP50 mAP50-95)为0  的问题或者train可以,但是到输出Box(P R mAP50 mAP50-95)直接报错

解决办法:

修改ultralytics/yolo/cfg/default.yaml     第49行   half  为   False 

以及注释掉ultralytics/yolo/engine/validator.py    # self.args.half = self.device.type != 'cpu'     将self.args.half的值设置为False,或者直接去掉就行,因为half已经改成Falsel了

self.training = trainer is not None
        if self.training:
            self.device = trainer.device
            self.data = trainer.data
            model = trainer.ema.ema or trainer.model
 
            #self.args.half = self.device.type != 'cpu'  # force FP16 val during training
            self.args.half = False
 
            self.model = model
            self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
            self.args.plots = trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
            model.eval()

也有文章说是NVIDIA对GTX16xx相关CUDA包有问题,把每个地方.half()改为.float()或者把half赋值为False,找到val.py和validator.py, 查看self.args.half的值,都改成False

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐