最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

以上代码使用了pandas、numpy、matplotlib和yfinance等库,通过yfinance获取了水果公司(AAPL)的股票数据,计算了收益率和移动平均线,并使用matplotlib绘制了收益率曲线和移动平均线。这是一个简单的股票数据分析示例,可以根据需要进行更复杂的分析和可视化。

2.人工智能

人工智能是指通过模拟人类智能的思维和行为,实现机器的智能化。Python在人工智能领域也有着广泛的应用,主要是因为其丰富的机器学习和深度学习库,如Scikit-learn、TensorFlow、PyTorch等。

学习路线:

学习Python基础语法和数据类型
学习机器学习算法,如决策树、支持向量机、随机森林等
学习深度学习算法,如神经网络、卷积神经网络、循环神经网络等
学习机器学习和深度学习库,如Scikit-learn、TensorFlow、PyTorch等
学习人工智能实战案例,如图像识别、自然语言处理、智能推荐等

案例:使用Python进行图像识别

以下是使用Python和OpenCV进行图像识别的示例代码:

import cv2

# 加载图像
image = cv2.imread('image.jpg')

# 将图像转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 加载分类器
face_cascade = cv2.CascadeClassifier('haarcascade\_frontalface\_default.xml')

# 检测人脸
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

# 在图像中标记人脸
for (x, y, w, h) in faces:
    cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)

# 显示图像
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

这段代码使用了OpenCV中的Haar级联分类器来检测图像中的人脸,并在图像中标记出来。可以通过更换不同的分类器来进行不同类型的图像识别。

3.Web开发

Web开发是指通过使用Web技术,如HTML、CSS、JavaScript等,开发Web应用程序。Python在Web开发领域也有着广泛的应用,主要是因为其高效的Web框架,如Django、Flask等。

学习路线:

学习Python基础语法和数据类型
学习Web开发基础知识,如HTML、CSS、JavaScript等
学习Web框架,如Django、Flask等
学习数据库,如MySQL、PostgreSQL等
学习Web开发实战案例,如博客、电商网站等

案例:使用Python和Django开发博客网站

以下是使用Python和Django开发博客网站的示例代码:

创建Django项目

django-admin startproject myblog

创建Django应用

cd myblog
python manage.py startapp blog

配置数据库
在myblog/settings.py文件中,找到DATABASES配置项,修改为:

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'myblog',
        'USER': 'root',
        'PASSWORD': 'password',
        'HOST': 'localhost',
        'PORT': '3306',
    }
}

创建博客模型
在blog/models.py文件中,创建博客模型:

from django.db import models

class Blog(models.Model):
    title = models.CharField(max_length=100)
    content = models.TextField()
    created_time = models.DateTimeField(auto_now_add=True)
    modified_time = models.DateTimeField(auto_now=True)

创建博客视图
在blog/views.py文件中,创建博客视图:

from django.shortcuts import render
from blog.models import Blog

def index(request):
    blogs = Blog.objects.all()
    return render(request, 'index.html', {'blogs': blogs})

创建博客模板
在blog/templates/index.html文件中,创建博客模板:

{% for blog in blogs %}
    <h2>{{ blog.title }}</h2>
    <p>{{ blog.content }}</p>
{% endfor %}

配置路由
在myblog/urls.py文件中,配置路由:

from django.urls import path
from blog.views import index

urlpatterns = [
    path('', index, name='index'),
]

运行Django应用

manage.py runserver

访问博客网站
在浏览器中访问http://127.0.0.1:8000/,即可看到首页。

4.科学计算

科学计算是指通过计算机技术,对科学问题进行建模、仿真和求解。Python在科学计算领域也有着广泛的应用,主要是因为其强大的科学计算库,如NumPy、SciPy、Matplotlib等。

学习路线:

学习Python基础语法和数据类型
学习科学计算库,如NumPy、SciPy、Matplotlib等
学习数值计算和优化算法,如线性代数、微积分、最优化等
学习科学计算实战案例,如物理模拟、数值计算等

案例:使用Python进行物理模拟

以下是一个简单的使用Python进行物理模拟的示例代码,模拟了一个简单的弹簧振动系统:

import numpy as np
import matplotlib.pyplot as plt

# 定义模拟参数
m = 1.0  # 物体质量
k = 1.0  # 弹簧劲度系数
x0 = 1.0  # 初始位移
v0 = 0.0  # 初始速度
t0 = 0.0  # 初始时间
tf = 10.0  # 模拟结束时间
dt = 0.01  # 时间步长

# 定义模拟函数
def simulate():
    t = [t0]
    x = [x0]
    v = [v0]
    while t[-1] < tf:
        a = -k/m \* x[-1]  # 计算加速度
        v_new = v[-1] + a\*dt  # 计算新速度
        x_new = x[-1] + v_new\*dt  # 计算新位移
        t_new = t[-1] + dt  # 计算新时间
        v.append(v_new)
        x.append(x_new)
        t.append(t_new)
    return t, x

# 进行模拟并绘制结果
t, x = simulate()


**一、Python所有方向的学习路线**

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

![img](https://img-blog.csdnimg.cn/1d40facda2b84990b8e1743f5487d455.png)  
![img](https://img-blog.csdnimg.cn/0fc11d4a31bd431dbf124f67f1749046.png)

**二、Python必备开发工具**

工具都帮大家整理好了,安装就可直接上手!![img](https://img-blog.csdnimg.cn/ff266f529c6a46c4bc28e5f895dec647.gif#pic_center)

**三、最新Python学习笔记**

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

![img](https://img-blog.csdnimg.cn/6d414e9f494742db8bcc3fa312200539.png)

**四、Python视频合集**

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

![img](https://img-blog.csdnimg.cn/a806d9b941c645858c61d161aec43789.png)

**五、实战案例**

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。![img](https://img-blog.csdnimg.cn/a353983317b14d3c8856824a0d6186c1.png)

**六、面试宝典**

![在这里插入图片描述](https://img-blog.csdnimg.cn/97c454a3e5b4439b8600b50011cc8fe4.png)

![在这里插入图片描述](https://img-blog.csdnimg.cn/111f5462e7df433b981dc2430bb9ad39.png)

###### **简历模板**![在这里插入图片描述](https://img-blog.csdnimg.cn/646863996ac44da8af500c049bb72fbd.png#pic_center)




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐