知识点

一、机器学习概述

  1. 人工智能

  2. 机器学习

  3. 深度学习

  4. 学习的范围:模式识别、数据挖掘、统计学习、计算机视觉、语音识别、自然语言处理

  5. 可以解决的问题:给定数据的预测问题

二、机器学习的类型

  • 监督学习

    • 分类

    • 回归

  • 无监督学习

    • 聚类

    • 降维

  • 强化学习

三、机器学习的背景知识

  • 数学基础:高等数学,线性代数,概率论与数理统计

  • python基础:numpy,pandas,scipy,mathplotlib,scikit-learn

四、机器学习的开发流程

五、练习

课程:Code.org

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐