第13章 回到目录 第15章

第14章-带通信和输入时延的异构竞争多智能体系统分组一致性

14.1 引言

14.2 预备知识

在本章中,假设一个由 n + m n+m n+m 个智能体组成的异构多智能体系统,其中包含一阶和二阶动力学智能体。为了方便,假设前 n n n 个和剩下的 m m m 个智能体分别具有二阶和一阶动力学特性的智能体,那么系统的动力学方程可以描述如下:
{ { x ˙ i ( t ) = v i ( t ) v ˙ i ( t ) = u i ( t ) , i ∈ g 1 x ˙ i ( t ) = u i ( t ) , i ∈ g 2 \left\{\begin{aligned} \left\{\begin{aligned} \dot{x}_i(t) = v_i(t) \\ \dot{v}_i(t) = u_i(t) \\ \end{aligned}\right. , i\in g_1 \\ \dot{x}_i(t) = u_i(t) , i\in g_2\\ \end{aligned}\right. {x˙i(t)=vi(t)v˙i(t)=ui(t),ig1x˙i(t)=ui(t),ig2

14.3 问题描述与分析

在文献 [18] 中,作者研究了具有相同输入时延的异构多智能体系统的分组一致性。系统描述如下:
{ x ˙ i ( t ) = v i ( t ) v ˙ i ( t ) = ∑ j ∈ g 1 a i j ( x j ( t − τ ) − x i ( t − τ ) ) + ∑ j ∈ g 2 a i j x j ( t − τ ) + ∑ j ∈ g 1 a i j ( v j ( t − τ ) − v i ( t − τ ) ) + ∑ j ∈ g 2 a i j v j ( t − τ ) , i ∈ g 1 \left\{\begin{aligned} \dot{x}_i(t) = v_i(t) \\ \dot{v}_i(t) = \sum_{j\in g_1} a_{ij}(x_j(t-\tau) - x_i(t-\tau)) + \sum_{j\in g_2} a_{ij}x_j(t-\tau) \\ +\sum_{j\in g_1} a_{ij}(v_j(t-\tau) - v_i(t-\tau)) + \sum_{j\in g_2} a_{ij}v_j(t-\tau) \end{aligned}\right. ,i\in g_1 x˙i(t)=vi(t)v˙i(t)=jg1aij(xj(tτ)xi(tτ))+jg2aijxj(tτ)+jg1aij(vj(tτ)vi(tτ))+jg2aijvj(tτ),ig1

{ x ˙ i ( t ) = v i ( t − τ ) + ∑ j ∈ g 2 a i j ( x j ( t − τ ) − x i ( t − τ ) ) + ∑ j ∈ g 1 a i j x j ( t − τ ) v ˙ i ( t ) = ∑ j ∈ g 2 a i j ( x j ( t ) − x i ( t ) ) + ∑ j ∈ g 1 a i j x j ( t ) , i ∈ g 2 \left\{\begin{aligned} \dot{x}_i(t) = v_i(t-\tau) + \sum_{j\in g_2} a_{ij}(x_j(t-\tau) - x_i(t-\tau)) + \sum_{j\in g_1} a_{ij}x_j(t-\tau) \\ \dot{v}_i(t) = \sum_{j\in g_2} a_{ij} (x_j(t) - x_i(t)) + \sum_{j\in g_1}a_{ij}x_j(t) \end{aligned}\right. ,i\in g_2 x˙i(t)=vi(tτ)+jg2aij(xj(tτ)xi(tτ))+jg1aijxj(tτ)v˙i(t)=jg2aij(xj(t)xi(t))+jg1aijxj(t),ig2

14.4 例子与数值仿真

14.5 本章小结

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐