本文装载至tensorflow官方教程

import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt

导入Fashion MNIST数据集

fashion_mnist = keras.datasets.fashion_mnist
(train_images,train_labels),(test_images,test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
               
train_images = train_images / 255.0
test_images = test_images / 255.0

构建模型

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10)
])
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

训练模型

model.fit(train_images, train_labels, epochs=10)

评估准确率

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print('\nTest accuracy:', test_acc)

进行预测

probability_model = tf.keras.Sequential([model, 
                                         tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)
Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐