%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
% restoredefaultpath
%%  导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';

%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数

%% 构建网络
net = newff(p_train, t_train, hiddennum);

%% 设置训练参数
net.trainParam.epochs     = 50;      % 训练次数
net.trainParam.goal       = 1e-4;     % 目标误差
net.trainParam.lr         = 0.01;     % 学习率
net.trainParam.showWindow = 0;        % 关闭窗口

%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = inputnum * hiddennum + hiddennum * outputnum + ...
    hiddennum + outputnum;                          % 优化参数个数

智能算法及其模型预测

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐