python学习打卡:DAY 41 简单CNN
就好比你在学习新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。例如,如果原始数据集有1000张图像,数据增强后,数据集的大小仍然是1000张,但每次训练时,模型看到的都是经过随机变换的新样本。该策略通常不改变单次训练的样本总数,而通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空
知识回顾
- 数据增强
- 卷积神经网络定义的写法
- batch归一化:调整一个批次的分布,常用与图像数据
- 特征图:只有卷积操作输出的才叫特征图
- 调度器:直接修改基础学习率
卷积操作常见流程如下:
1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层
- Flatten -> Dense (with Dropout,可选) -> Dense (Output)
这里相关的概念比较多,如果之前没有学习过复试班强化班中的计算机视觉部分,请自行上网检索视频了解下基础概念,也可以对照我提供的之前的讲义学习下。
作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。
数据增强
在图像数据预处理环节,为提升数据多样性,可采用数据增强(数据增广)策略。该策略通常不改变单次训练的样本总数,而通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。
例如,如果原始数据集有1000张图像,数据增强后,数据集的大小仍然是1000张,但每次训练时,模型看到的都是经过随机变换的新样本。由于每次训练时模型看到的都是不同的数据变体,因此数据增强的效果相当于间接增加了样本数目。原图被替换成了新的图
常见的修改策略包括以下几类
1. 几何变换:如旋转、缩放、平移、裁剪、剪裁、翻转
2. 像素变换:如修改颜色、亮度、对比度、饱和度、色相、高斯模糊(模拟对焦失败)、增加噪声、马赛克
3. 语义增强(暂时不用):mixup,对图像进行结构性改造、cutout随机遮挡等
此外在数据极少的场景,常常使用生成模型来扩充数据集,如GAN、VAE等
CNN模型
卷积的本质:通过卷积核在输入通道上的滑动乘积,提取跨通道的空间特征。所以只需要定义几个参数即可
1. 卷积核的大小:如3*3、5*5、7*7等
2. 输入通道数:输入图片的通道数,如1(单通道图片)、3(RGB图片)、4(RGBA图片)等
3. 输出通道数:卷积核的个数,即输出通道数。如本模型中通过32->64->128逐步增加特征复杂度
4. 步长:卷积核的滑动步长,默认为1
# 4.定义CNN模型(代替原MLP)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__() # 继承父类初始化
# ---------------------- 第一个卷积块 ----------------------
# 卷积层1:输入3通道(RGB),输出32个特征图。卷积核3*3,边缘填充1像素
self.conv1 = nn.Conv2d(
in_channels=3, # 输入通道数(图像的RGB通道)
out_channel=32, # 输出通道数(生成32个特征图)
kernel_size=3, # 卷积层尺寸(3*3像素)
padding=1 # 边缘填充1像素,保持输出尺寸与输入相同
)
# 批量归一化层:对32个输出通道进行归一化,加速训练
self.bn1 = nn.BatchNorm2d(num_features=32)
# ReLU激活函数:引入非线性,公式max(0, x)
self.relu1 = nn.ReLU()
# 最大池化层:窗口2*2,步长2,特征尺寸减版(32*32->16*16)
self.pool1 = nn.MaxPool2d(kernal_size=2, stride=2) # stride默认等于kernal_size
# ---------------------- 第二个卷积块 ----------------------
# 卷积层2:输入32通道(来自conv1的输出),输出64通道
self.conv2 = nn.Conv2d(
in_channels=32, # 输入通道数(前一层的输出通道数)
out_channels=64, # 输出通道数(特征图数量翻倍)
kernel_size=3, # 卷积核尺寸不变
padding=1 # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后)
)
self.bn2 = nn.BatchNorm2d(num_feature=64)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernal_size=2) # 尺寸减半:16*16->8*8
# ---------------------- 第三个卷积块 ----------------------
# 卷积层3:输入64通道,输出128通道
self.conv3 = nn.Conv2d(
in_channels=64, # 输入通道数(前一层的输出通道数)
out_channels=128, # 输出通道数(特征图数量再次翻倍)
kernel_size=3,
padding=1 # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后)
)
self.bn3 = nn.BatchNorm2d(num_features=128)
self.relu3 = nn.ReLU() # 复用激活函数对象(节省内存)
self.pool3 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:8x8→4x4
# ---------------------- 全连接层(分类器) ----------------------
# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维
self.fc1 = nn.Linear(
in_features = 128 * 4 * 4, # 输入维度(卷积层输出的特征数)
out_features = 512 # 输出维度(隐藏层神经元数)
)
# Dropout层:训练时随机丢弃50%神经元,防止过拟合
self.dropout = nn.Dropout(p=0.5)
# 输出层:将512维特征映射到10个类别
self.fc2 = nn.Linear(in_features=512, out_features=10)
def forward(self, x):
# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)
# --------- 卷积块1处理 ----------
x = self.conv1(x) # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)
x = self.bn1(x) # 批量归一化,不改变尺寸
x = self.relu1(x) # 激活函数,不改变尺寸
x = self.pool1(x) # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)
# ---------- 卷积块2处理 ----------
x = self.conv2(x) # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool2(x) # 池化后尺寸:[batch_size, 64, 8, 8]
# ---------- 卷积块3处理 ----------
x = self.conv3(x) # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)
x = self.bn3(x)
x = self.relu3(x)
x = self.pool3(x) # 池化后尺寸:[batch_size, 128, 4, 4]
# ---------- 展平与全连接层 ----------
# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]
x = x.view(-1, 128 * 4 * 4) # -1自动计算批量维度,保持批量大小不变
x = self.fc1(x) # 全连接层:2048→512,尺寸变为[batch_size, 512]
x = self.relu3(x) # 激活函数(复用relu3,与卷积块3共用)
x = self.dropout(x) # Dropout随机丢弃神经元,不改变尺寸
x = self.fc2(x) # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)
return x # 输出未经过Softmax的logits,适用于交叉熵损失函数
# 初始化模型
model = CNN()
model = model.to(device)
batch归一化
batch归一化时深度学习中常用的归一化技术,加速模型收敛并提升泛化能力。通常位于卷积层后。
卷积常见流程如下:
1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层
2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)
其中,BatchNorm应在池化前对空间维度的特征完成归一化,以确保归一化统计量给予足够多的样本(空间位置),避免池化导致的统计量偏差
旨在解决深度神经网络训练中的内部协变量偏移问题:深层网络中,随着前层参数更新,后层输入分布会发生变化,导致模型需要不断适应新分布,训练难度增加。就好比你在学习新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。
通过对每个批次的输入数据进行标准化(均值为0、方差为1),想象把一堆杂乱无章、分布不同的数据规整到一个标准的样子。
1.使各层输入分布稳定,让数据处于激活函数比较合适的区域,缓解梯度消失/爆炸问题;
2.因为数据分布稳定了,所以允许使用更大的学习率,提升训练效率
更多推荐
所有评论(0)