高等数学(第七版)同济大学 习题11-3 (后4题)个人解答
高等数学(第七版)同济大学 习题11-3 (后4题)个人解答
高等数学(第七版)同济大学 习题11-3(后4题)
函数作图软件:Mathematica
8. 验证下列P(x, y)dx+Q(x, y)dy在整个xOy平面内是某一函数u(x, y)的全微分,并求这样的一个u(x, y):\begin{aligned}&8. \ 验证下列P(x, \ y)dx+Q(x, \ y)dy在整个xOy平面内是某一函数u(x, \ y)的全微分,并求这样的一个u(x, \ y):&\end{aligned}8. 验证下列P(x, y)dx+Q(x, y)dy在整个xOy平面内是某一函数u(x, y)的全微分,并求这样的一个u(x, y):
(1) (x+2y)dx+(2x+y)dy; (2) 2xydx+x2dy; (3) 4sin xsin 3ycos xdx−3cos 3ycos 2xdy; (4) (3x2y+8xy2)dx+(x3+8x2y+12yey)dy; (5) (2xcos y+y2cos x)dx+(2ysin x−x2sin y)dy.\begin{aligned} &\ \ (1)\ \ (x+2y)dx+(2x+y)dy;\\\\ &\ \ (2)\ \ 2xydx+x^2dy;\\\\ &\ \ (3)\ \ 4sin\ xsin\ 3ycos\ xdx-3cos\ 3ycos\ 2xdy;\\\\ &\ \ (4)\ \ (3x^2y+8xy^2)dx+(x^3+8x^2y+12ye^y)dy;\\\\ &\ \ (5)\ \ (2xcos\ y+y^2cos\ x)dx+(2ysin\ x-x^2sin\ y)dy. & \end{aligned} (1) (x+2y)dx+(2x+y)dy; (2) 2xydx+x2dy; (3) 4sin xsin 3ycos xdx−3cos 3ycos 2xdy; (4) (3x2y+8xy2)dx+(x3+8x2y+12yey)dy; (5) (2xcos y+y2cos x)dx+(2ysin x−x2sin y)dy.
解:
(1) 在整个xOy面内,函数P=x+2y,Q=2x+y具有一阶连续偏导数,且∂Q∂x=2=∂P∂y,因此所给表达式 是某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则u(x, y)=∫0xxdx+∫0y(2x+y)dy=x22+2xy+y22. (2) 在整个xOy面内,函数P=2xy,Q=x2具有一阶连续偏导数,且∂Q∂x=2x=∂P∂y,因此所给表达式是 某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则u(x, y)=∫0x2x⋅0dx+∫0yx2dy=x2y. (3) 在整个xOy面内,函数P=4sin xsin 3ycos x,Q=−3cos 3ycos 2x具有一阶连续偏导数,且 ∂Q∂x=6cos 3ysin 2x=∂P∂y,因此所给表达式是某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则 u(x, y)=∫0x0⋅dx+∫0y(−3cos 3ycos 2x)dy=[−sin 3ycos 2x]01=−cos 2xsin 3y. (4) 在整个xOy面内,函数P=3x2y+8xy2,Q=x3+8x2y+12yey具有一阶连续偏导数,且 ∂Q∂x=3x2+16xy=∂P∂y,因此所给表达式是某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则 u(x, y)=∫0x0⋅dx+∫0y(x3+8x2y+12yey)dy=x3y+4x2y2+12(yey−ey). (5) 在整个xOy面内,函数P=2xcos y+y2cos x,Q=2ysin x−x2sin y具有一阶连续偏导数,且 ∂Q∂x=2ycos x−2xsin y=∂P∂y,因此所给表达式是某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则 u(x, y)=∫0x2xdx+∫0y(2ysin x−x2sin y)dy=y2sin x+x2cos y.\begin{aligned} &\ \ (1)\ 在整个xOy面内,函数P=x+2y,Q=2x+y具有一阶连续偏导数,且\frac{\partial Q}{\partial x}=2=\frac{\partial P}{\partial y},因此所给表达式\\\\ &\ \ \ \ \ \ \ \ 是某一函数u(x, \ y)的全微分,取(x_0, \ y_0)=(0, \ 0),则u(x,\ y)=\int_{0}^{x}xdx+\int_{0}^{y}(2x+y)dy=\frac{x^2}{2}+2xy+\frac{y^2}{2}.\\\\ &\ \ (2)\ 在整个xOy面内,函数P=2xy,Q=x^2具有一阶连续偏导数,且\frac{\partial Q}{\partial x}=2x=\frac{\partial P}{\partial y},因此所给表达式是\\\\ &\ \ \ \ \ \ \ \ 某一函数u(x, \ y)的全微分,取(x_0, \ y_0)=(0, \ 0),则u(x,\ y)=\int_{0}^{x}2x\cdot 0dx+\int_{0}^{y}x^2dy=x^2y.\\\\ &\ \ (3)\ 在整个xOy面内,函数P=4sin\ xsin\ 3ycos\ x,Q=-3cos\ 3ycos\ 2x具有一阶连续偏导数,且\\\\ &\ \ \ \ \ \ \ \ \frac{\partial Q}{\partial x}=6cos\ 3ysin\ 2x=\frac{\partial P}{\partial y},因此所给表达式是某一函数u(x, \ y)的全微分,取(x_0, \ y_0)=(0, \ 0),则\\\\ &\ \ \ \ \ \ \ \ u(x,\ y)=\int_{0}^{x}0\cdot dx+\int_{0}^{y}(-3cos\ 3ycos\ 2x)dy=[-sin\ 3ycos\ 2x]_{0}^{1}=-cos\ 2xsin\ 3y.\\\\ &\ \ (4)\ 在整个xOy面内,函数P=3x^2y+8xy^2,Q=x^3+8x^2y+12ye^y具有一阶连续偏导数,且\\\\ &\ \ \ \ \ \ \ \ \frac{\partial Q}{\partial x}=3x^2+16xy=\frac{\partial P}{\partial y},因此所给表达式是某一函数u(x, \ y)的全微分,取(x_0, \ y_0)=(0, \ 0),则\\\\ &\ \ \ \ \ \ \ \ u(x,\ y)=\int_{0}^{x}0\cdot dx+\int_{0}^{y}(x^3+8x^2y+12ye^y)dy=x^3y+4x^2y^2+12(ye^y-e^y).\\\\ &\ \ (5)\ 在整个xOy面内,函数P=2xcos\ y+y^2cos\ x,Q=2ysin\ x-x^2sin\ y具有一阶连续偏导数,且\\\\ &\ \ \ \ \ \ \ \ \frac{\partial Q}{\partial x}=2ycos\ x-2xsin\ y=\frac{\partial P}{\partial y},因此所给表达式是某一函数u(x, \ y)的全微分,取(x_0, \ y_0)=(0, \ 0),则\\\\ &\ \ \ \ \ \ \ \ u(x,\ y)=\int_{0}^{x}2xdx+\int_{0}^{y}(2ysin\ x-x^2sin\ y)dy=y^2sin\ x+x^2cos\ y. & \end{aligned} (1) 在整个xOy面内,函数P=x+2y,Q=2x+y具有一阶连续偏导数,且∂x∂Q=2=∂y∂P,因此所给表达式 是某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则u(x, y)=∫0xxdx+∫0y(2x+y)dy=2x2+2xy+2y2. (2) 在整个xOy面内,函数P=2xy,Q=x2具有一阶连续偏导数,且∂x∂Q=2x=∂y∂P,因此所给表达式是 某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则u(x, y)=∫0x2x⋅0dx+∫0yx2dy=x2y. (3) 在整个xOy面内,函数P=4sin xsin 3ycos x,Q=−3cos 3ycos 2x具有一阶连续偏导数,且 ∂x∂Q=6cos 3ysin 2x=∂y∂P,因此所给表达式是某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则 u(x, y)=∫0x0⋅dx+∫0y(−3cos 3ycos 2x)dy=[−sin 3ycos 2x]01=−cos 2xsin 3y. (4) 在整个xOy面内,函数P=3x2y+8xy2,Q=x3+8x2y+12yey具有一阶连续偏导数,且 ∂x∂Q=3x2+16xy=∂y∂P,因此所给表达式是某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则 u(x, y)=∫0x0⋅dx+∫0y(x3+8x2y+12yey)dy=x3y+4x2y2+12(yey−ey). (5) 在整个xOy面内,函数P=2xcos y+y2cos x,Q=2ysin x−x2sin y具有一阶连续偏导数,且 ∂x∂Q=2ycos x−2xsin y=∂y∂P,因此所给表达式是某一函数u(x, y)的全微分,取(x0, y0)=(0, 0),则 u(x, y)=∫0x2xdx+∫0y(2ysin x−x2sin y)dy=y2sin x+x2cos y.
9. 设有一变力在坐标轴上的投影为X=x2+y2,Y=2xy−8,这变力确定了一个力场,证明质点在此 场内移动时,场力所作的功与路径无关.\begin{aligned}&9. \ 设有一变力在坐标轴上的投影为X=x^2+y^2,Y=2xy-8,这变力确定了一个力场,证明质点在此\\\\&\ \ \ \ 场内移动时,场力所作的功与路径无关.&\end{aligned}9. 设有一变力在坐标轴上的投影为X=x2+y2,Y=2xy−8,这变力确定了一个力场,证明质点在此 场内移动时,场力所作的功与路径无关.
解:
场力所作的功W=∫LXdx+Ydy=∫L(x2+y2)dx+(2xy−8)dy,因为在整个xOy面内, 函数P=x2+y2,Q=2xy−8具有一阶连续偏导数,且∂Q∂x=2y=∂P∂y,所以曲线积分在xOy面内与路径无关, 即场力所作的功与路径无关.\begin{aligned} &\ \ 场力所作的功W=\int_{L}Xdx+Ydy=\int_{L}(x^2+y^2)dx+(2xy-8)dy,因为在整个xOy面内,\\\\ &\ \ 函数P=x^2+y^2,Q=2xy-8具有一阶连续偏导数,且\frac{\partial Q}{\partial x}=2y=\frac{\partial P}{\partial y},所以曲线积分在xOy面内与路径无关,\\\\ &\ \ 即场力所作的功与路径无关. & \end{aligned} 场力所作的功W=∫LXdx+Ydy=∫L(x2+y2)dx+(2xy−8)dy,因为在整个xOy面内, 函数P=x2+y2,Q=2xy−8具有一阶连续偏导数,且∂x∂Q=2y=∂y∂P,所以曲线积分在xOy面内与路径无关, 即场力所作的功与路径无关.
10. 判别下列方程中哪些是全微分方程?对于全微分方程,求出它的通解.\begin{aligned}&10. \ 判别下列方程中哪些是全微分方程?对于全微分方程,求出它的通解.&\end{aligned}10. 判别下列方程中哪些是全微分方程?对于全微分方程,求出它的通解.
(1) (3x2+6xy2)dx+(6x2y+4y2)dy=0; (2) (a2−2xy−y2)dx−(x+y)2dy=0 (a为常数); (3) eydx+(xey−2y)dy=0; (4) (xcos y+cos x)y′−ysin x+sin y=0; (5) (x2−y)dx−xdy=0; (6) y(x−2y)dx−x2dy=0; (7) (1+e2θ)dρ+2ρe2θdθ=0; (8) (x2+y2)dx+xydy=0.\begin{aligned} &\ \ (1)\ \ (3x^2+6xy^2)dx+(6x^2y+4y^2)dy=0;\\\\ &\ \ (2)\ \ (a^2-2xy-y^2)dx-(x+y)^2dy=0\ (a为常数);\\\\ &\ \ (3)\ \ e^ydx+(xe^y-2y)dy=0;\\\\ &\ \ (4)\ \ (xcos\ y+cos\ x)y'-ysin\ x+sin\ y=0;\\\\ &\ \ (5)\ \ (x^2-y)dx-xdy=0;\\\\ &\ \ (6)\ \ y(x-2y)dx-x^2dy=0;\\\\ &\ \ (7)\ \ (1+e^{2\theta})d\rho+2\rho e^{2\theta}d\theta=0;\\\\ &\ \ (8)\ \ (x^2+y^2)dx+xydy=0. & \end{aligned} (1) (3x2+6xy2)dx+(6x2y+4y2)dy=0; (2) (a2−2xy−y2)dx−(x+y)2dy=0 (a为常数); (3) eydx+(xey−2y)dy=0; (4) (xcos y+cos x)y′−ysin x+sin y=0; (5) (x2−y)dx−xdy=0; (6) y(x−2y)dx−x2dy=0; (7) (1+e2θ)dρ+2ρe2θdθ=0; (8) (x2+y2)dx+xydy=0.
解:
(1) ∂P∂y=∂∂y(3x2+6xy2)=12xy,∂Q∂x=∂∂x(6x2y+4y2)=12xy,因为∂P∂y≡∂Q∂x,所以原方程是全微分方程。 u(x, y)=u(x, y)=∫0xP(x, 0)dx+∫0yQ(x, y)dy=∫0x3x2dx+∫0y(6x2y+4y2)dy=x3+3x2y2+43y3, 通解为x3+3x2y2+43y3=C. (2) ∂P∂y=∂∂y(a2−2xy−y2)=−2x−2y,∂Q∂x=∂∂x[−(x+y)2]=−2x−2y,因为∂P∂y≡∂Q∂x,所以原方程是 全微分方程。u(x, y)=u(x, y)=∫0xP(x, 0)dx+∫0yQ(x, y)dy=∫0xa2dx−∫0y(x+y)2dy= a2−13(x+y)3+13x3=a2x−x2y−xy2−13y3,通解为a2x−x2y−xy2−13y3=C. (3) ∂P∂y=∂∂yey=ey,∂Q∂x=∂∂x(xey−2y)=ey,因为∂P∂y≡∂Q∂x,所以原方程是全微分方程。 eydx+(xey−2y)dy=(eydx+xeydy)−2ydy=d(xey)−d(y2)=d(xey−y2),原方程为d(xey−y2)=0, 通解为xey−y2=C. (4) 原方程改写为(sin y−ysin x)dx+(xcos y+cos x)dy=0,∂P∂y=∂∂y(sin y−ysin x)=cos y−sin x, ∂Q∂x=∂∂x(xcos y+cos x)=cos y−sin x,因为∂P∂y≡∂Q∂x,所以原方程是全微分方程。 (xcos y+cos x)y′−ysin x+sin y=(sin y−ysin x)dx+(xcos y+cos x)dy= (sin ydx+xcos ydy)+(−ysin xdx+cos xdy)=d(xsin y)+d(ycos x),即原方程为d(xsin y+ycos x)=0, 通解为xsin y+ycos x=C. (5) ∂P∂y=∂∂y(x2−y)=−1,∂Q∂x=∂∂x(−x)=−1,因为∂P∂y≡∂Q∂x,所以原方程是全微分方程。 (x2−y)dx−xdy=x2dx−(ydx+xdy)=d(x33)−d(xy),即原方程为d(x33−xy)=0, 通解为x33−xy=C. (6) ∂P∂y=∂∂y[y(x−2y)]=x−4y,∂Q∂x=∂∂x(−x2)=−2x,因为∂P∂y≢∂Q∂x,所以原方程不是全微分方程。 (7) ∂P∂θ=∂∂θ(1+e2θ)=2e2θ,∂Q∂ρ=∂∂ρ(2ρe2θ)=2e2θ,因为∂P∂y≡∂Q∂x,所以原方程是全微分方程。 (1+e2θ)dρ+2ρe2θdθ=dρ+(e2θdρ+2ρe2θdθ)=dρ+d(ρe2θ),即原方程为d(ρ+ρe2θ)=0, 通解为ρ+ρe2θ=C. (8) ∂P∂y=∂∂y(x2+y2)=2y,∂Q∂x=∂∂x(xy)=y,因为∂P∂y≢∂Q∂x,所以原方程不是全微分方程。\begin{aligned} &\ \ (1)\ \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(3x^2+6xy^2)=12xy,\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}(6x^2y+4y^2)=12xy,因为\frac{\partial P}{\partial y}\equiv \frac{\partial Q}{\partial x},所以原方程是全微分方程。\\\\ &\ \ \ \ \ \ \ \ u(x,\ y)=u(x,\ y)=\int_{0}^{x}P(x, \ 0)dx+\int_{0}^{y}Q(x, \ y)dy=\int_{0}^{x}3x^2dx+\int_{0}^{y}(6x^2y+4y^2)dy=x^3+3x^2y^2+\frac{4}{3}y^3,\\\\ &\ \ \ \ \ \ \ \ 通解为x^3+3x^2y^2+\frac{4}{3}y^3=C.\\\\ &\ \ (2)\ \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(a^2-2xy-y^2)=-2x-2y,\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}[-(x+y)^2]=-2x-2y,因为\frac{\partial P}{\partial y}\equiv \frac{\partial Q}{\partial x},所以原方程是\\\\ &\ \ \ \ \ \ \ \ 全微分方程。u(x,\ y)=u(x,\ y)=\int_{0}^{x}P(x, \ 0)dx+\int_{0}^{y}Q(x, \ y)dy=\int_{0}^{x}a^2dx-\int_{0}^{y}(x+y)^2dy=\\\\ &\ \ \ \ \ \ \ \ a^2-\frac{1}{3}(x+y)^3+\frac{1}{3}x^3=a^2x-x^2y-xy^2-\frac{1}{3}y^3,通解为a^2x-x^2y-xy^2-\frac{1}{3}y^3=C.\\\\ &\ \ (3)\ \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}e^y=e^y,\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}(xe^y-2y)=e^y,因为\frac{\partial P}{\partial y}\equiv \frac{\partial Q}{\partial x},所以原方程是全微分方程。\\\\ &\ \ \ \ \ \ \ \ e^ydx+(xe^y-2y)dy=(e^ydx+xe^ydy)-2ydy=d(xe^y)-d(y^2)=d(xe^y-y^2),原方程为d(xe^y-y^2)=0,\\\\ &\ \ \ \ \ \ \ \ 通解为xe^y-y^2=C.\\\\ &\ \ (4)\ 原方程改写为(sin\ y-ysin\ x)dx+(xcos\ y+cos\ x)dy=0,\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(sin\ y-ysin\ x)=cos\ y-sin\ x,\\\\ &\ \ \ \ \ \ \ \ \frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}(xcos\ y+cos\ x)=cos\ y-sin\ x,因为\frac{\partial P}{\partial y}\equiv \frac{\partial Q}{\partial x},所以原方程是全微分方程。\\\\ &\ \ \ \ \ \ \ \ (xcos\ y+cos\ x)y'-ysin\ x+sin\ y=(sin\ y-ysin\ x)dx+(xcos\ y+cos\ x)dy=\\\\ &\ \ \ \ \ \ \ \ (sin\ ydx+xcos\ ydy)+(-ysin\ xdx+cos\ xdy)=d(xsin\ y)+d(ycos\ x),即原方程为d(xsin\ y+ycos\ x)=0,\\\\ &\ \ \ \ \ \ \ \ 通解为xsin\ y+ycos\ x=C.\\\\ &\ \ (5)\ \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(x^2-y)=-1,\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}(-x)=-1,因为\frac{\partial P}{\partial y}\equiv \frac{\partial Q}{\partial x},所以原方程是全微分方程。\\\\ &\ \ \ \ \ \ \ \ (x^2-y)dx-xdy=x^2dx-(ydx+xdy)=d\left(\frac{x^3}{3}\right)-d(xy),即原方程为d\left(\frac{x^3}{3}-xy\right)=0,\\\\ &\ \ \ \ \ \ \ \ 通解为\frac{x^3}{3}-xy=C.\\\\ &\ \ (6)\ \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}[y(x-2y)]=x-4y,\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}(-x^2)=-2x,因为\frac{\partial P}{\partial y}\not\equiv \frac{\partial Q}{\partial x},所以原方程不是全微分方程。\\\\ &\ \ (7)\ \frac{\partial P}{\partial \theta}=\frac{\partial}{\partial \theta}(1+e^{2\theta})=2e^{2\theta},\frac{\partial Q}{\partial \rho}=\frac{\partial}{\partial \rho}(2\rho e^{2\theta})=2e^{2\theta},因为\frac{\partial P}{\partial y}\equiv \frac{\partial Q}{\partial x},所以原方程是全微分方程。\\\\ &\ \ \ \ \ \ \ \ (1+e^{2\theta})d\rho+2\rho e^{2\theta}d\theta=d\rho+(e^{2\theta}d\rho+2\rho e^{2\theta}d\theta)=d\rho+d(\rho e^{2\theta}),即原方程为d(\rho+\rho e^{2\theta})=0,\\\\ &\ \ \ \ \ \ \ \ 通解为\rho+\rho e^{2\theta}=C.\\\\ &\ \ (8)\ \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(x^2+y^2)=2y,\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}(xy)=y,因为\frac{\partial P}{\partial y}\not\equiv \frac{\partial Q}{\partial x},所以原方程不是全微分方程。 & \end{aligned} (1) ∂y∂P=∂y∂(3x2+6xy2)=12xy,∂x∂Q=∂x∂(6x2y+4y2)=12xy,因为∂y∂P≡∂x∂Q,所以原方程是全微分方程。 u(x, y)=u(x, y)=∫0xP(x, 0)dx+∫0yQ(x, y)dy=∫0x3x2dx+∫0y(6x2y+4y2)dy=x3+3x2y2+34y3, 通解为x3+3x2y2+34y3=C. (2) ∂y∂P=∂y∂(a2−2xy−y2)=−2x−2y,∂x∂Q=∂x∂[−(x+y)2]=−2x−2y,因为∂y∂P≡∂x∂Q,所以原方程是 全微分方程。u(x, y)=u(x, y)=∫0xP(x, 0)dx+∫0yQ(x, y)dy=∫0xa2dx−∫0y(x+y)2dy= a2−31(x+y)3+31x3=a2x−x2y−xy2−31y3,通解为a2x−x2y−xy2−31y3=C. (3) ∂y∂P=∂y∂ey=ey,∂x∂Q=∂x∂(xey−2y)=ey,因为∂y∂P≡∂x∂Q,所以原方程是全微分方程。 eydx+(xey−2y)dy=(eydx+xeydy)−2ydy=d(xey)−d(y2)=d(xey−y2),原方程为d(xey−y2)=0, 通解为xey−y2=C. (4) 原方程改写为(sin y−ysin x)dx+(xcos y+cos x)dy=0,∂y∂P=∂y∂(sin y−ysin x)=cos y−sin x, ∂x∂Q=∂x∂(xcos y+cos x)=cos y−sin x,因为∂y∂P≡∂x∂Q,所以原方程是全微分方程。 (xcos y+cos x)y′−ysin x+sin y=(sin y−ysin x)dx+(xcos y+cos x)dy= (sin ydx+xcos ydy)+(−ysin xdx+cos xdy)=d(xsin y)+d(ycos x),即原方程为d(xsin y+ycos x)=0, 通解为xsin y+ycos x=C. (5) ∂y∂P=∂y∂(x2−y)=−1,∂x∂Q=∂x∂(−x)=−1,因为∂y∂P≡∂x∂Q,所以原方程是全微分方程。 (x2−y)dx−xdy=x2dx−(ydx+xdy)=d(3x3)−d(xy),即原方程为d(3x3−xy)=0, 通解为3x3−xy=C. (6) ∂y∂P=∂y∂[y(x−2y)]=x−4y,∂x∂Q=∂x∂(−x2)=−2x,因为∂y∂P≡∂x∂Q,所以原方程不是全微分方程。 (7) ∂θ∂P=∂θ∂(1+e2θ)=2e2θ,∂ρ∂Q=∂ρ∂(2ρe2θ)=2e2θ,因为∂y∂P≡∂x∂Q,所以原方程是全微分方程。 (1+e2θ)dρ+2ρe2θdθ=dρ+(e2θdρ+2ρe2θdθ)=dρ+d(ρe2θ),即原方程为d(ρ+ρe2θ)=0, 通解为ρ+ρe2θ=C. (8) ∂y∂P=∂y∂(x2+y2)=2y,∂x∂Q=∂x∂(xy)=y,因为∂y∂P≡∂x∂Q,所以原方程不是全微分方程。
11. 确定常数λ,使在右半平面x>0上的向量A(x, y)=2xy(x4+y2)λi−x2(x4+y2)λj为某二元函数 u(x, y)的梯度,并求u(x, y).\begin{aligned}&11. \ 确定常数\lambda,使在右半平面x \gt 0上的向量A(x,\ y)=2xy(x^4+y^2)^{\lambda}i-x^2(x^4+y^2)^{\lambda}j为某二元函数\\\\&\ \ \ \ \ \ u(x, \ y)的梯度,并求u(x, \ y).&\end{aligned}11. 确定常数λ,使在右半平面x>0上的向量A(x, y)=2xy(x4+y2)λi−x2(x4+y2)λj为某二元函数 u(x, y)的梯度,并求u(x, y).
解:
在单连通区域G内,如果P(x, y),Q(x, y)具有一阶连续偏导数,则向量A(x, y)=P(x, y)i+Q(x, y)j为 某二元函数u(x, y)的梯度的充分必要条件是∂P∂y=∂Q∂x在G内恒成立,因为P(x, y)=2xy(x4+y2)λ, Q(x, y)=−x2(x4+y2)λ,∂P∂y=2x(x4+y2)λ+2λxy(x4+y2)λ−1⋅2y, ∂Q∂x=−2x(x4+y2)λ−x2λ(x4+y2)λ−1⋅4x3,根据∂P∂y=∂Q∂x得4x(x4+y2)λ(1+λ)=0,因为4x(x4+y2)λ>0, 所以λ=−1,即A(x, y)=2xyi−x2jx4+y2,在半平面x>0内,取(x0, y0)=(1, 0),得 u(x, y)=∫1x2x⋅0x4+02dx−∫0yx2x4+y2dy=−arctan yx2.\begin{aligned} &\ \ 在单连通区域G内,如果P(x,\ y),Q(x, \ y)具有一阶连续偏导数,则向量A(x, \ y)=P(x, \ y)i+Q(x, \ y)j为\\\\ &\ \ 某二元函数u(x, \ y)的梯度的充分必要条件是\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}在G内恒成立,因为P(x, \ y)=2xy(x^4+y^2)^{\lambda},\\\\ &\ \ Q(x, \ y)=-x^2(x^4+y^2)^{\lambda},\frac{\partial P}{\partial y}=2x(x^4+y^2)^{\lambda}+2\lambda xy(x^4+y^2)^{\lambda-1}\cdot 2y,\\\\ &\ \ \frac{\partial Q}{\partial x}=-2x(x^4+y^2)^{\lambda}-x^2\lambda(x^4+y^2)^{\lambda-1}\cdot 4x^3,根据\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}得4x(x^4+y^2)^{\lambda}(1+\lambda)=0,因为4x(x^4+y^2)^{\lambda} \gt 0,\\\\ &\ \ 所以\lambda=-1,即A(x, \ y)=\frac{2xyi-x^2j}{x^4+y^2},在半平面x \gt 0内,取(x_0, \ y_0)=(1,\ 0),得\\\\ &\ \ u(x, \ y)=\int_{1}^{x}\frac{2x\cdot 0}{x^4+0^2}dx-\int_{0}^{y}\frac{x^2}{x^4+y^2}dy=-arctan\ \frac{y}{x^2}. & \end{aligned} 在单连通区域G内,如果P(x, y),Q(x, y)具有一阶连续偏导数,则向量A(x, y)=P(x, y)i+Q(x, y)j为 某二元函数u(x, y)的梯度的充分必要条件是∂y∂P=∂x∂Q在G内恒成立,因为P(x, y)=2xy(x4+y2)λ, Q(x, y)=−x2(x4+y2)λ,∂y∂P=2x(x4+y2)λ+2λxy(x4+y2)λ−1⋅2y, ∂x∂Q=−2x(x4+y2)λ−x2λ(x4+y2)λ−1⋅4x3,根据∂y∂P=∂x∂Q得4x(x4+y2)λ(1+λ)=0,因为4x(x4+y2)λ>0, 所以λ=−1,即A(x, y)=x4+y22xyi−x2j,在半平面x>0内,取(x0, y0)=(1, 0),得 u(x, y)=∫1xx4+022x⋅0dx−∫0yx4+y2x2dy=−arctan x2y.
更多推荐
所有评论(0)