一、衡量线性回归法的指标,MSE,RMS,MAE

衡量线性回归法的指标之一,就是这么一个衡量标准,让误差和尽可能小,但是这里有一个问题就是m的大小会对衡量造成影响,因此此处引入
MSE均方误差(Mean Squared Error)、
RSE均方误差(Root Mean Squared Error)、
平均绝对误差MAE(Mean Absolute Error)
在这里插入图片描述

1、MSE均方误差(Mean Squared Error)

在这里插入图片描述

2、RSE均方误差(Root Mean Squared Error)

在这里插入图片描述

3、平均绝对误差MAE(Mean Absolute Error)

在这里插入图片描述

二、演示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

三、评价回归算法R Square

回忆:

在解决分类问题的时候,我们评价分类的准确度1代表最好0代表最差,取值在0-1之间;

但是问题来了,

MSE RMSE MAE没有这样的性质,我们无法判断算法准确度的优劣,这就是以上三种方法的局限性;

解决方法:

RSquared;
R^2后面部分的分子代表使用我们的模型预测产生的错误,分母代表y=y的均值,使其成为一个模型(最基本的模型Baseline Model);
用1-后面式子相当于衡量了使用模型没有产生错误的相应的指标;
所以这个值越大越好,越接近1越好;
在这里插入图片描述
在这里插入图片描述

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐