大数据开发之机器学习总结(Mllib示例)(五)
大数据开发之机器学习总结(Mllib示例)(五)背景作为spark框架中支持机器学习的模块,其算法库核心内容如下可以看到,主要就是分类,回归,决策树等算法1. 分类算法分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类分类在数据挖掘中是一项重要的任务,目前在商业上应用最多,常见的典型应用场景有流失预测、精确营销、客户获取、个
·
大数据开发之机器学习总结(Mllib示例)(五)
背景
- 作为spark框架中支持机器学习的模块,其算法库核心内容如下
- 可以看到,主要就是分类,回归,决策树等算法
1. 分类算法
- 分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类
- 分类在数据挖掘中是一项重要的任务,目前在商业上应用最多,常见的典型应用场景有流失预测、精确营销、客户获取、个性偏好等
- MLlib 目前支持分类算法有:
逻辑回归、支持向量机、朴素贝叶斯和决策树
导入训练数据集,然后在训练集上执行训练算法,最后在所得模型上进行预测并计算训练误差
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
// 加载和解析数据文件
val data = sc.textFile("mllib/data/sample_svm_data.txt")
val parsedData = data.map { line =>
val parts = line.split(' ')
LabeledPoint(parts(0).toDouble, parts.tail.map(x => x.toDouble).toArray)
}
// 设置迭代次数并进行进行训练
val numIterations = 20
val model = SVMWithSGD.train(parsedData, numIterations)
// 统计分类错误的样本比例
val labelAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count
println("Training Error = " + trainErr)
2. 回归算法
- 回归算法属于监督式学习,每个个体都有一个与之相关联的实数标签,并且我们希望在给出用于表示这些实体的数值特征后,所预测出的标签值可以尽可能接近实际值。
- MLlib 目前支持回归算法有:
线性回归、岭回归、Lasso和决策树。
导入训练数据集,将其解析为带标签点的RDD,使用 LinearRegressionWithSGD 算法建立一个简单的线性模型来预测标签的值,最后计算均方差来评估预测值与实际值的吻合度
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
// 加载和解析数据文件
val data = sc.textFile("mllib/data/ridge-data/lpsa.data")
val parsedData = data.map { line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, parts(1).split(' ').map(x => x.toDouble).toArray)
}
//设置迭代次数并进行训练
val numIterations = 20
val model = LinearRegressionWithSGD.train(parsedData, numIterations)
// 统计回归错误的样本比例
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2)}.reduce(_ + _)/valuesAndPreds.count
println("training Mean Squared Error = " + MSE)
3. 聚类算法
- 聚类算法属于非监督式学习,通常被用于探索性的分析,是根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程
- 它的目的是使得属于同一簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似,常见的典型应用场景有客户细分、客户研究、市场细分、价值评估。
- MLlib 目前支持广泛使用的KMmeans聚类算法
导入训练数据集,使用 KMeans 对象来将数据聚类到两个类簇当中,所需的类簇个数会被传递到算法中,然后计算集内均方差总和 (WSSSE),可以通过增加类簇的个数 k 来减小误差。 实际上,最优的类簇数通常是 1,因为这一点通常是WSSSE图中的 “低谷点”
import org.apache.spark.mllib.clustering.KMeans
// 加载和解析数据文件
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map( _.split(' ').map(_.toDouble))
// 设置迭代次数、类簇的个数
val numIterations = 20
val numClusters = 2
// 进行训练
val clusters = KMeans.train(parsedData, numClusters, numIterations)
// 统计聚类错误的样本比例
val WSSSE = clusters.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)
4. 协同过滤
- 协同过滤常被应用于推荐系统,这些技术旨在补充用户-商品关联矩阵中所缺失的部分。
- MLlib当前支持基于模型的协同过滤,其中用户和商品通过一小组隐语义因子进行表达,并且这些因子也用于预测缺失的元素。
导入训练数据集,数据每一行由一个用户、一个商品和相应的评分组成。假设评分是显性的,使用默认的ALS.train()方法,通过计算预测出的评分的均方差来评估这个推荐模型
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating
// 加载和解析数据文件
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map(_.split(',') match {
case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble)
})
// 设置迭代次数
val numIterations = 20
val model = ALS.train(ratings, 1, 20, 0.01)
// 对推荐模型进行评分
val usersProducts = ratings.map{
case Rating(user, product, rate) => (user, product)
}
val predictions = model.predict(usersProducts).map{
case Rating(user, product, rate) => ((user, product), rate)
}
val ratesAndPreds = ratings.map{
case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map{
case ((user, product), (r1, r2)) => math.pow((r1- r2), 2)
}.reduce(_ + _)/ratesAndPreds.count
println("Mean Squared Error = " + MSE)
5. 总结
- mllib可以支持的机器学习算法并不是无穷,需要根据业务场景选择使用或者组合使用
- mllib中算法,主要有几大类,分类,回归,聚类,协同过滤
- 使用现有mllib可以应对大部分业务场景中的如分类,推荐等问题
- 注意spark本身使用scala开发,并且可以无缝对接java生态,如果真有无法解决的算法库问题,可以去java生态圈寻找答案。
- 注意spark本身也加入对python支持,这样使用python可以调用spark,但需要注意,对python的支持一般落后于scala和java 接口的开发进度。
- 如果真的遇到算法实现难题,可以尝试转去python生态,但对接hadoop生态时,需要注意工程接入细节。这也是为什么spark 的mllib比较受欢迎的原因。
更多推荐
所有评论(0)