深度学习入门路线图123
深度学习首选 Python,Python 已经成为深度学习主导性的编程语言。而且,现在许多主流的深度学习框架。例如 PyTorch、TensorFlow 也都是基于 Python 的。Anaconda 作为 Python 的一个集成管理工具,它把 Python 相关数据计算与分析科学包都集成在了一起,省去了各个安装的麻烦,非常方便。而且,Anaconda 自带了 Jupyter Notebook,
深度学习首选 Python,Python 已经成为深度学习主导性的编程语言。而且,现在许多主流的深度学习框架。
例如 PyTorch、TensorFlow 也都是基于 Python 的。Anaconda 作为 Python 的一个集成管理工具,它把 Python 相关数据计算与分析科学包都集成在了一起,省去了各个安装的麻烦,非常方便。
而且,Anaconda 自带了 Jupyter Notebook,Jupyter Notebook 是一个非常强大的工具,允许使用者为数据分析、教育、文件等任何你可以想到的内容创建漂亮的交互式文档,已迅速成为数据分析、机器学习、深度学习的必备工具。
只有对神经网络模型结构和推导过程有清晰的认识才能更好地建立模型优化直觉,构建性能良好的神经网络模型。而不是做只会使用框架和库,知其然不知其所以然的“调包侠”。
俗话说:纸上得来终觉浅,觉知此事要躬行!理论与模型的建立都是为了更好地实践,为了解决实际问题。深度学习也是这样,掌握每个理论知识后,更重要的是将理论用于实践。
例如,使用深度学习模型解决图像识别、语音识别等,或者参加 kaggle。通过实战,更能加深自己的理解,帮助自己更加熟练地掌握深度学习应用技巧。
为了帮助大家更好地入门深度学习,我梳理了以下知识点网络:
主要体现在神经网络模型的数学推导、神经网络模型的优化,以及如何构建一个优秀的深度学习模型解决实际问题。
更多推荐
所有评论(0)