【GRU回归预测】基于matlab注意力机制卷积神经网络结合门控循环单元Attention-CNN-GRU数据预测(多输入单输出)【含Matlab源码 3188期】
注意力机制卷积神经网络结合门控循环单元Attention-CNN-GRU数据预测(多输入单输出)完整代码和数据,数据可直接替换,适合小白!可提供运行操作视频!
💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab智能算法神经网络预测与分类仿真内容点击👇
①Matlab神经网络预测与分类 (进阶版)
②付费专栏Matlab智能算法神经网络预测与分类(中级版)
③付费专栏Matlab智能算法神经网络预测与分类(初级版)
⛳️关注CSDN海神之光,更多资源等你来!!
⛄一、CNN-GRU数据预测
1 理论基础
1.1 CNN算法
负荷序列数据为一维数据,用一维卷积核对数据进行卷积处理,以获取数据的特征。
现设定卷积核的维度为3,移动步长为1,对输入数据进行卷积,以获得特征图图谱,即:
式中:yj为第j个位置的特征值输出;xj为第j个位置的数据值;uj为第j个位置的卷积核值。
1.2 GRU算法
将经过卷积之后产生的特征序列作为GRU的输入。GRU由LSTM发展而来,LSTM是RNN的变体。RNN网络通过对输入信号的循环保证了信号的持续存在。LSTM是由RNN网络改进而来,在RNN的基础上加入了记忆单元和门机制,有效地解决了长序列训练中存在的梯度消失和梯度爆炸问题。
LSTM用输入门、遗忘门和输出门3个门函数来控制输入值、遗忘值和输出值。GRU网络较LSTM网络有所简化,GRU网络由新门和重置门两个门函数构成,其结构如图1所示。
图1 GRU的网络结构图
zt为更新门,用来决定上一层隐藏层状态中有多少信息传递到当前的隐藏状态ht中,经过sigmoid函数将结果映射到0~1之间,即:
rt为重置门,决定上一时刻隐藏层状态有多少信息需要被遗忘,经过sigmoid函数将结果映射到0~1之间,越接近1信息越容易被保留,即:
确定当前的记忆内容,将重置门rt与ht–1进行Hadamard乘积决定当前的记忆内容中要遗忘多少上一时刻的隐藏层的内容,然后与新的输入数据结合放入tanh激活函数中,即:
最后确定当前隐藏层保留的信息,通过zt和1–zt确定哪些历史数据和当前数据需要更新,即:
2 预测结果及分析
2.1 CNN-GRU预测模型建立
1)获取数据。本文选取某地区商业生活、工业生产的总负荷数据作为实验数据。在电网上搭建负荷采集设备,每h采集一次。研究发现在气象因素中温度对负荷的影响最大。由于其他气象因素获取困难、不易量化,在数据集中加入最高温度、最低温度、平均温度结合负荷数据构成测试样本;
2)数据处理。获得的数据中除含有负荷值外,还有最高温度、最低温度、平均温度等温度数据。由于现场采集情况复杂,数据中有许多空值数据,在进行模型训练之前需要对数据进行清洗并进行归一化处理。将数据分为训练数据和测试数据;
3)搭建CNN-GRU网络模型,对模型进行训练。首先将处理后的数据放入CNN网络中,进行卷积和池化操作,提取数据新的特征。然后将经过卷积处理之后的数据放入RNN网络中,由于输入数据为一维时间序列,因此使用一维卷积层。在卷积层中,卷积步长设为1,使用RELU函数作为激活函数。将归一化后的训练集数据输入搭建好的CNN-GRU网络中进行训练;
4)模型评价。将测试集数据输入到训练好的CNN-GRU网络中,以均方根误差(root mean square error,RMSE)和平均相对误差(mean absolute percent error,MAPE)作为准确度评价指标对训练好的模型进行评价。
式中:n为预测点个数;ai为第i个预测点的电力负荷预测值;bi为第i个预测点的电力负荷真实值。MAPE值和RMSE值越小,预测准确率越高。
⛄二、部分源代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
% restoredefaultpath
%% 导入数据
res = xlsread(‘data.xlsx’);
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), 😃; % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)‘;
T_train = res(1: num_train_s, f_ + 1: end)’;
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)‘;
T_test = res(num_train_s + 1: end, f_ + 1: end)’;
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, f_, 1, 1, M));
p_test = double(reshape(p_test , f_, 1, 1, N));
t_train = double(t_train)‘;
t_test = double(t_test )’;
%% 数据格式转换
for i = 1 : M
Lp_train{i, 1} = p_train(:, :, 1, i);
end
for i = 1 : N
Lp_test{i, 1} = p_test( :, :, 1, i);
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]张立峰,刘旭.基于CNN-GRU神经网络的短期负荷预测[J].电力科学与工程. 2020,36(11)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
更多推荐
所有评论(0)