关于opencv-python中kalman函数的顺序
最近在学卡尔曼的理论知识,找了个代码看,是先correct后predict,怎么想怎么不对,记录一下,顺序应该是先predict,再correct。import cv2import numpy as npimport matplotlib.pyplot as pltpos = np.array([[10,50],[12,49],[11,52],[13,52.2],
·
最近在学卡尔曼的理论知识,找了个代码看,是先correct后predict,怎么想怎么不对,记录一下,顺序应该是先predict,再correct。
import cv2
import numpy as np
import matplotlib.pyplot as plt
pos = np.array([
[10, 50],
[12, 49],
[11, 52],
[13, 52.2],
[12.9, 50]], np.float32)
'''
它有3个输入参数,dynam_params:状态空间的维数,这里为2;measure_param:测量值的维数,这里也为2; control_params:控制向量的维数,默认为0。由于这里该模型中并没有控制变量,因此也为0。
'''
kalman = cv2.KalmanFilter(2,2)
kalman.measurementMatrix = np.array([[1,0],[0,1]],np.float32)
kalman.transitionMatrix = np.array([[1,0],[0,1]], np.float32)
kalman.processNoiseCov = np.array([[1,0],[0,1]], np.float32) * 1e-4
kalman.measurementNoiseCov = np.array([[1,0],[0,1]], np.float32) * 1e-4 #0.01
'''
kalman.measurementNoiseCov为测量系统的协方差矩阵,方差越小,预测结果越接近测量值,kalman.processNoiseCov为模型系统的噪声,噪声越大,预测结果越不稳定,越容易接近模型系统预测值,且单步变化越大,相反,若噪声小,则预测结果与上个计算结果相差不大。
'''
kalman.statePre = np.array([[6],[6]],np.float32)
for i in range(len(pos)):
mes = np.reshape(pos[i,:],(2,1))
y = kalman.predict()
x = kalman.correct(mes)
print (kalman.statePost[0],kalman.statePost[1])
print (kalman.statePre[0],kalman.statePre[1])
print ('measurement:\t',mes[0],mes[1])
print ('correct:\t',x[0],x[1])
print ('predict:\t',y[0],y[1])
print ('='*30)
更多推荐
所有评论(0)