from bs4 import BeautifulSoup  # 导入 BeautifulSoup 的方法 
# 可以传入一段字符串,或者传入一个文件句柄。一般都会先用 requests 库获取网页内容,然后使用 soup 解析。 
soup = BeautifulSoup(html_doc,'html.parser')  # 这里一定要指定解析器,可以使用默认的 html,也可以使用 lxml。 
print(soup.prettify())  # 按照标准的缩进格式输出获取的 soup 内容。 

BeautifulSoup 的一些简单用法

print(soup.title)  # 获取文档的 title 
print(soup.title.name)  # 获取 title 的 name 属性 
print(soup.title.string)  # 获取 title 的内容 
print(soup.p)  # 获取文档中第一个 p 节点 
print(soup.p['class'])  # 获取第一个 p 节点的 class 内容 
print(soup.find_all('a'))  # 获取文档中所有的 a 节点,返回一个 list 
print(soup.find_all('span', attrs={'style': "color:#ff0000"}))  # 获取文档中所有的 span 且 style 符合规则的节点,返回一个 list 

具体的用法和效果,我会在后面的实战中详细说明。

XPath 定位

XPath 是 XML 的路径语言,是通过元素和属性进行导航定位的。几种常用的表达式

表达式含义node选择 node 节点的所有子节点/从根节点选取//选取所有当前节点.当前节点…父节点@属性选取text()当前路径下的文本内容

一些简单的例子

xpath('node')  # 选取 node 节点的所有子节点 
xpath('/div')  # 从根节点上选取 div 元素 
xpath('//div')  # 选取所有 div 元素 
xpath('./div')  # 选取当前节点下的 div 元素 
xpath('//@id')  # 选取所有 id 属性的节点 

当然,XPath 非常强大,但是语法也相对复杂,不过我们可以通过 Chrome 的开发者工具来快速定位到元素的 xpath,如下图
在这里插入图片描述
得到的 xpath 为

//*[@id="anony-nav"]/div[1]/ul/li[1]/a 

在实际的使用过程中,到底使用 BeautifulSoup 还是 XPath,完全取决于个人喜好,哪个用起来更加熟练方便,就使用哪个。

爬虫实战:爬取豆瓣海报

我们可以从豆瓣影人页,进入都影人对应的影人图片页面,比如以刘涛为例子,她的影人图片页面地址为

  • [https://movie.douban.com/celebrity/1011562/photos/]
    在这里插入图片描述
    下面我们就来分析下这个网页
目标网站页面分析

注意:网络上的网站页面构成总是会变化的,所以这里你需要学会分析的方法,以此类推到其他网站。正所谓授人以鱼不如授人以渔,就是这个原因。

Chrome 开发者工具

Chrome 开发者工具(按 F12 打开),是分析网页的绝佳利器,一定要好好使用。

我们在任意一张图片上右击鼠标,选择“检查”,可以看到同样打开了“开发者工具”,而且自动定位到了该图片所在的位置
在这里插入图片描述
可以清晰的看到,每张图片都是保存在 li 标签中的,图片的地址保存在 li 标签中的 img 中。

知道了这些规律后,我们就可以通过 BeautifulSoup 或者 XPath 来解析 HTML 页面,从而获取其中的图片地址。

代码编写

我们只需要短短的几行代码,就能完成图片 url 的提取

import requests 
from bs4 import BeautifulSoup  
 
url = 'https://movie.douban.com/celebrity/1011562/photos/' 
res = requests.get(url).text 
content = BeautifulSoup(res, "html.parser") 
data = content.find_all('div', attrs={'class': 'cover'}) 
picture_list = [] 
for d in data: 
    plist = d.find('img')['src'] 
    picture_list.append(plist) 
print(picture_list) 
>>> 
['https://img1.doubanio.com/view/photo/m/public/p2564834267.jpg', 'https://img1.doubanio.com/view/photo/m/public/p860687617.jpg', 'https://img1.doubanio.com/view/photo/m/public/p2174001857.jpg', 'https://img1.doubanio.com/view/photo/m/public/p1563789129.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2363429946.jpg', 'https://img1.doubanio.com/view/photo/m/public/p2382591759.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2363269182.jpg', 'https://img1.doubanio.com/view/photo/m/public/p1959495269.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2356638830.jpg', 'https://img3.doubanio.com/view/photo/m/public/p1959495471.jpg', 'https://img3.doubanio.com/view/photo/m/public/p1834379290.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2325385303.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2361707270.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2325385321.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2196488184.jpg', 'https://img1.doubanio.com/view/photo/m/public/p2186019528.jpg', 'https://img1.doubanio.com/view/photo/m/public/p2363270277.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2325240501.jpg', 'https://img1.doubanio.com/view/photo/m/public/p2258657168.jpg', 'https://img1.doubanio.com/view/photo/m/public/p2319710627.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2319710591.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2311434791.jpg', 'https://img1.doubanio.com/view/photo/m/public/p2363270708.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2258657185.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2166193915.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2363265595.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2312085755.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2311434790.jpg', 'https://img3.doubanio.com/view/photo/m/public/p2276569205.jpg', 'https://img1.doubanio.com/view/photo/m/public/p2165332728.jpg'] 

可以看到,是非常干净的列表,里面存储了海报地址。

但是这里也只是一页海报的数据,我们观察页面发现它有好多分页,如何处理分页呢。
在这里插入图片描述

分页处理

我们点击第二页,看看浏览器 url 的变化

发现浏览器 url 增加了几个参数

再点击第三页,继续观察 url

通过观察可知,这里的参数,只有 start 是变化的,即为变量,其余参数都可以按照常理来处理

同时还可以知道,这个 start 参数应该是起到了类似于 page 的作用,start = 30 是第二页,start = 60 是第三页,依次类推,最后一页是 start = 420。

于是我们处理分页的代码也呼之欲出了

首先将上面处理 HTML 页面的代码封装成函数

def get_poster_url(res): 
    content = BeautifulSoup(res, "html.parser") 
    data = content.find_all('div', attrs={'class': 'cover'}) 
    picture_list = [] 
    for d in data: 
        plist = d.find('img')['src'] 
        picture_list.append(plist) 
    return picture_list 

然后我们在另一个函数中处理分页和调用上面的函数

def fire(): 
    page = 0 
    for i in range(0, 450, 30): 
        print("开始爬取第 %s 页" % page) 
        url = 'https://movie.douban.com/celebrity/1011562/photos/?type=C&start={}&sortby=like&size=a&subtype=a'.format(i) 
        res = requests.get(url).text 
        data = get_poster_url(res) 
        page += 1 

此时,我们所有的海报数据都保存在了 data 变量中,现在就需要一个下载器来保存海报了

def download_picture(pic_l): 
    if not os.path.exists(r'picture'): 
        os.mkdir(r'picture') 
    for i in pic_l: 
        pic = requests.get(i) 
        p_name = i.split('/')[7] 
        with open('picture\\' + p_name, 'wb') as f: 
            f.write(pic.content) 

再增加下载器到 fire 函数,此时为了不是请求过于频繁而影响豆瓣网的正常访问,设置 sleep time 为1秒

def fire(): 
    page = 0 
    for i in range(0, 450, 30): 
        print("开始爬取第 %s 页" % page) 
        url = 'https://movie.douban.com/celebrity/1011562/photos/?type=C&start={}&sortby=like&size=a&subtype=a'.format(i) 
        res = requests.get(url).text 
        data = get_poster_url(res) 
        download_picture(data) 
        page += 1 
        time.sleep(1) 

下面就执行 fire 函数,等待程序运行完成后,当前目录下会生成一个 picture 的文件夹,里面保存了我们下载的所有海报
在这里插入图片描述

核心代码讲解

下面再来看下完整的代码

import requests 
from bs4 import BeautifulSoup 
import time 
import osdef fire(): 
    page = 0 
    for i in range(0, 450, 30): 
        print("开始爬取第 %s 页" % page) 
        url = 'https://movie.douban.com/celebrity/1011562/photos/?type=C&start={}&sortby=like&size=a&subtype=a'.format(i) 
        res = requests.get(url).text 
        data = get_poster_url(res) 
        download_picture(data) 
        page += 1 
        time.sleep(1)def get_poster_url(res): 
    content = BeautifulSoup(res, "html.parser") 
    data = content.find_all('div', attrs={'class': 'cover'}) 
    picture_list = [] 
    for d in data: 
        plist = d.find('img')['src'] 
        picture_list.append(plist) 
    return picture_listdef download_picture(pic_l): 
    if not os.path.exists(r'picture'): 
        os.mkdir(r'picture') 
    for i in pic_l: 
        pic = requests.get(i) 
        p_name = i.split('/')[7] 
        with open('picture\\' + p_name, 'wb') as f: 
            f.write(pic.content)if __name__ == '__main__': 
    fire() 

fire 函数

这是一个主执行函数,使用 range 函数来处理分页。

  • range 函数可以快速的创建整数列表,在 for 循环时及其好用。函数中的0代表从0开始计数,450代表一直迭代到450,不包含450,30代表步长,即每次递增的数字间隔。range(0, 450, 30),依次会输出:0,30,60,90 …
  • format 函数,是一种字符串格式化方式
  • time.sleep(1) 即为暂停1秒钟
get_poster_url 函数

这个就是解析 HTML 的函数,使用的是 BeautifulSoup

  • 通过 find_all 方法查找所有 class 为 “cover” 的 div 元素,返回的是一个列表
  • 使用 for 循环,循环上一步拿到的列表,取出 src 的内容,append 到列表中
  • append 是列表的一个方法,可以在列表后面追加元素
download_picture 函数

简易图片下载器

  • 首先判断当前目录下是否存在 picture 文件夹,os.path.exists
  • os 库是非常常用用来操作系统相关的命令库,os.mkdir 就是创建文件夹
  • split 用于切割字符串,取出角标为7的元素,作为存储图片的名称
  • with 方法用来快速打开文件,打开的进程可以自行关闭文件句柄,而不再需要手动执行 f.close() 关闭文件
总结

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐