在github上下载NIST SP800-22后,直接在linux平台运行较为方便,直接虚拟机里安装linux系统,在文件夹内直接“make”就行。
但如果在windows端安装,则有一些麻烦,需要安装一堆零零碎碎的软件。
以下采用更简单的方法让windows平台编译源代码。
下载链接:通过网盘分享的文件:NIST SP800-22
链接: https://pan.baidu.com/s/1BueKoLzY4tfpFVyIKfFz3g?pwd=i8v6 提取码: i8v6

1. 安装Dev C++软件

软件版本:Dev-Cpp 5.11 TDM-GCC 4.9.2.exe

1、双击安装。
在这里插入图片描述

2、选择语言为英文。
在这里插入图片描述

3、点击“I Agree”。
在这里插入图片描述

4、直接点击“Next >”。
在这里插入图片描述

5、选择安装位置后点击“Install”。
在这里插入图片描述

6、安装完成后,打开软件。
在这里插入图片描述

2. 解压NIST SP800-22文件夹

在sts文件夹下,include文件夹内为.h文件,src文件夹内为.c文件,Dev C++需要导入这两个文件夹内的c语言源文件。
在这里插入图片描述

3. 构建项目

1、点击“文件->新建->项目”。

在这里插入图片描述

2、选择Basic->Empty Project,C项目,修改名称后点击确定。
在这里插入图片描述

3、选择保存路径。

在这里插入图片描述

4、复制“sts”文件夹下的“/include”和“/src”文件夹到本地文件夹下。

在这里插入图片描述

5、右键点击项目管理的顶层文件目录,“添加”源文件。

在这里插入图片描述

6、把“/include”和“/src”文件夹中的.c和.h文件都加入项目内。
在这里插入图片描述

右键自动生产的未命名文件,移除文件。

7、access.c为顶层文件,其中有main函数。

在这里插入图片描述

8、点击编译,等待一段时间自动生成makefile和编译。

在这里插入图片描述

9、查看文件夹内,可以看到“Makefile.win”和“nist_sp800_22.exe”可执行文件。

在这里插入图片描述

4. 运行程序

1、复制/sts/data中的测试数据到dev中exe的文件夹下。

在这里插入图片描述

2、在.exe所在的文件夹下创建createFolder.bat,以创建实验文件夹experiments和其内部文件夹。createFolder.bat内部代码如下:

setlocal enabledelayedexpansion

set folders=AlgorithmTesting BBS CCG G-SHA1 LCG MODEXP MS QCG1 QCG2 XOR

for %%d in (%folders%) do (
	mkdir "experiments\%%d\Frequency"
	mkdir "experiments\%%d\BlockFrequency"
	mkdir "experiments\%%d\Runs"
	mkdir "experiments\%%d\LongestRun"
	mkdir "experiments\%%d\Rank"
	mkdir "experiments\%%d\FFT"
	mkdir "experiments\%%d\NonOverlappingTemplate"
	mkdir "experiments\%%d\OverlappingTemplate"
	mkdir "experiments\%%d\Universal"
	mkdir "experiments\%%d\LinearComplexity"
	mkdir "experiments\%%d\Serial"
	mkdir "experiments\%%d\ApproximateEntropy"
	mkdir "experiments\%%d\CumulativeSums"
	mkdir "experiments\%%d\RandomExcursions"
	mkdir "experiments\%%d\RandomExcursionsVariant"
)

endlocal

所有新添加的文件如下:

在这里插入图片描述

3、在路径处输入cmd,打开终端。

在这里插入图片描述

4、双击createFolder.bat即可生成文件夹。

在这里插入图片描述

5、输入nist_sp800_22.exe 100000,即可打开测试程序。

在这里插入图片描述

6、以下步骤可以查看源文件中的“README.md”。

在这里插入图片描述

部分操作如下:

G E N E R A T O R    S E L E C T I O N 
           ______________________________________

    [0] Input File                 [1] Linear Congruential
    [2] Quadratic Congruential I   [3] Quadratic Congruential II
    [4] Cubic Congruential         [5] XOR
    [6] Modular Exponentiation     [7] Blum-Blum-Shub
    [8] Micali-Schnorr             [9] G Using SHA-1

   Enter Choice: 0


		User Prescribed Input File: data/data.pi

                S T A T I S T I C A L   T E S T S
                _________________________________

    [01] Frequency                       [02] Block Frequency
    [03] Cumulative Sums                 [04] Runs
    [05] Longest Run of Ones             [06] Rank
    [07] Discrete Fourier Transform      [08] Nonperiodic Template Matchings
    [09] Overlapping Template Matchings  [10] Universal Statistical
    [11] Approximate Entropy             [12] Random Excursions
    [13] Random Excursions Variant       [14] Serial
    [15] Linear Complexity

         INSTRUCTIONS
            Enter 0 if you DO NOT want to apply all of the
            statistical tests to each sequence and 1 if you DO.

   Enter Choice: 1

        P a r a m e t e r   A d j u s t m e n t s
        -----------------------------------------
    [1] Block Frequency Test - block length(M):         128
    [2] NonOverlapping Template Test - block length(m): 9
    [3] Overlapping Template Test - block length(m):    9
    [4] Approximate Entropy Test - block length(m):     10
    [5] Serial Test - block length(m):                  16
    [6] Linear Complexity Test - block length(M):       500

   Select Test (0 to continue): 0

   How many bitstreams? 10

   Input File Format:
    [0] ASCII - A sequence of ASCII 0's and 1's
    [1] Binary - Each byte in data file contains 8 bits of data

   Select input mode:  0

     Statistical Testing In Progress.........

     Statistical Testing Complete!!!!!!!!!!!!

7、在experiments/AlgorithmTesting中查看finalAnalysisReport.txt

在这里插入图片描述

8、测试结果如下:

------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
   generator is <data/data.pi>
------------------------------------------------------------------------------
 C1  C2  C3  C4  C5  C6  C7  C8  C9 C10  P-VALUE  PROPORTION  STATISTICAL TEST
------------------------------------------------------------------------------
  1   1   3   0   0   2   1   0   1   1  0.534146     10/10      Frequency
  1   2   1   0   2   2   1   0   1   0  0.739918     10/10      BlockFrequency
  1   1   1   2   1   0   0   2   1   1  0.911413     10/10      CumulativeSums
  1   2   0   1   1   1   1   2   1   0  0.911413     10/10      CumulativeSums
  0   4   1   1   0   2   0   1   0   1  0.122325     10/10      Runs
  0   1   0   4   1   0   1   1   1   1  0.213309     10/10      LongestRun
  1   1   0   1   1   1   2   1   0   2  0.911413     10/10      Rank
  2   1   0   0   2   1   1   1   2   0  0.739918     10/10      FFT
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  0   0   0   0   0   0   0   0  10   0  0.000000 *   10/10      NonOverlappingTemplate
  4   0   1   2   0   1   0   0   0   2  0.066882      9/10      OverlappingTemplate
 10   0   0   0   0   0   0   0   0   0  0.000000 *    0/10   *  Universal
  0   1   1   2   0   1   3   1   1   0  0.534146     10/10      ApproximateEntropy
  0   2   0   0   0   0   0   0   0   0     ----       2/2       RandomExcursions
  0   0   0   0   1   0   1   0   0   0     ----       2/2       RandomExcursions
  0   0   0   0   1   0   0   1   0   0     ----       2/2       RandomExcursions
  0   0   0   0   0   0   1   1   0   0     ----       2/2       RandomExcursions
  0   0   1   0   0   0   0   1   0   0     ----       2/2       RandomExcursions
  0   0   1   0   0   0   0   0   0   1     ----       2/2       RandomExcursions
  0   0   0   1   0   0   1   0   0   0     ----       2/2       RandomExcursions
  0   1   0   0   1   0   0   0   0   0     ----       2/2       RandomExcursions
  0   0   0   1   0   0   0   1   0   0     ----       2/2       RandomExcursionsVariant
  0   0   0   1   0   0   0   1   0   0     ----       2/2       RandomExcursionsVariant
  0   0   0   1   0   0   0   0   0   1     ----       2/2       RandomExcursionsVariant
  0   0   0   1   0   1   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   0   0   0   1   1   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   0   0   0   2   0   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   0   0   1   1   0   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   0   0   0   0   1   1   0   0   0     ----       2/2       RandomExcursionsVariant
  0   0   0   0   0   2   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   1   0   0   0   0   0   0   0   1     ----       2/2       RandomExcursionsVariant
  0   1   0   0   0   0   0   0   1   0     ----       2/2       RandomExcursionsVariant
  0   1   0   1   0   0   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   1   1   0   0   0   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   1   0   1   0   0   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   0   2   0   0   0   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   0   1   1   0   0   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   0   1   0   1   0   0   0   0   0     ----       2/2       RandomExcursionsVariant
  0   1   0   0   0   0   1   0   0   0     ----       2/2       RandomExcursionsVariant
  3   0   2   1   0   0   1   0   1   2  0.350485      9/10      Serial
  2   2   1   1   0   2   0   0   0   2  0.534146      9/10      Serial
  2   2   1   0   0   1   1   0   2   1  0.739918     10/10      LinearComplexity


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 8 for a
sample size = 10 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 1 for a sample size = 2 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐