曲线y=(x−1)(x−2)2(x−3)3(x−4)4y=(x-1)(x-2)^{2}(x-3)^{3}(x-4)^{4}y=(x1)(x2)2(x3)3(x4)4的一个拐点是()
A.(1,0) B.(2,0) C.(3,0) D.(4,0)
解析:此题选C,设g(x)=(x−1)(x−2)2(x−4)4g(x)=(x-1)(x-2)^{2}(x-4)^{4}g(x)=(x1)(x2)2(x4)4,则y=(x−3)3g(x)y=(x-3)^{3} g(x)y=(x3)3g(x),于是
y′=3(x−3)2g(x)+(x−3)3g′(x)y′′=6(x−3)g(x)+3(x−3)2g′(x)+3(x−3)2g′(x)+(x−3)3g′′(x)=(x−3)⋅[6g(x)+6(x−3)g′(x)+(x−3)2g′′(x)] \begin{aligned} y^{\prime} &=3(x-3)^{2} g(x)+(x-3)^{3} g^{\prime}(x) \\ y^{\prime \prime} &=6(x-3) g(x)+3(x-3)^{2} g^{\prime}(x)+3(x-3)^{2} g^{\prime}(x)+(x-3)^{3} g^{\prime \prime}(x) \\ &=(x-3) \cdot\left[6 g(x)+6(x-3) g^{\prime}(x)+(x-3)^{2} g^{\prime \prime}(x)\right] \end{aligned} yy=3(x3)2g(x)+(x3)3g(x)=6(x3)g(x)+3(x3)2g(x)+3(x3)2g(x)+(x3)3g(x)=(x3)[6g(x)+6(x3)g(x)+(x3)2g(x)]
再令h(x)=6g(x)+6(x−3)g′(x)+(x−3)2g′′(x)h(x)=6 g(x)+6(x-3) g^{\prime}(x)+(x-3)^{2} g^{\prime \prime}(x)h(x)=6g(x)+6(x3)g(x)+(x3)2g(x),由h(3)=6g(3)=12>0h(3)=6 g(3)=12>0h(3)=6g(3)=12>0以及极限的保号性可知,存在δ>0\delta>0δ>0,使得当3−δ<x<3+δ3-\delta<x<3+\delta3δ<x<3+δ时,有h(x)>0h(x)>0h(x)>0,这样即得(3,0)是拐点。

总结:对于曲线
f(x)=(x−a1)k1(x−a2)k2⋯(x−an)kn,ki∈Z+,a1<a2<⋯<an f(x)=\left(x-a_{1}\right)^{k_{1}}\left(x-a_{2}\right)^{k_{2}} \cdots\left(x-a_{n}\right)^{k_{n}}, \quad k_{i} \in Z^{+}, \quad a_{1}<a_{2}<\cdots<a_{n} f(x)=(xa1)k1(xa2)k2(xan)kn,kiZ+,a1<a2<<an
下列结论成立
(i)当kik_iki为大于或等于3的奇数时,(a_i,0)为其拐点;
(i)当kik_iki为大于3的偶数时,(a_i,0)不为其拐点;
(i)当ki=1k_i=1ki=1时,(a_i,0)不为其拐点;
(i)当ki=2k_i=2ki=2时,(a_i,0)不为其拐点。
证明见论文《关于曲线f(x)=(x−a1)k1(x−a2)k2⋯(x−an)knf(x)=\left(x-a_{1}\right)^{k_{1}}\left(x-a_{2}\right)^{k_{2}} \cdots\left(x-a_{n}\right)^{k_{n}}f(x)=(xa1)k1(xa2)k2(xan)kn拐点的探讨》

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐