测试通过环境:

采用anaconda3+python3.9安装,模块版本如下

mkl-fft     1.3.1
mkl-random  1.2.2
mkl-service 2.4.0
numpy       1.22.4
Pillow      10.0.0
pip         24.2
pycolmap    0.3.0
setuptools  75.1.0
six         1.16.0
wheel       0.44.0

pycolmap安装后测试代码:

import numpy as np
import pycolmap
from PIL import Image, ImageOps

# Input should be grayscale image with range [0, 1].
img = Image.open('D:/test.jpg').convert('RGB')
img = ImageOps.grayscale(img)
img = np.array(img).astype(np.float32) / 255.

# Optional parameters:
# - options: dict or pycolmap.SiftExtractionOptions
# - device: default pycolmap.Device.auto uses the GPU if available
sift = pycolmap.Sift()

# Parameters:
# - image: HxW float array
keypoints, descriptors,_ = sift.extract(img)
# Returns:
# - keypoints: Nx4 array; format: x (j), y (i), scale, orientation
# - descriptors: Nx128 array; L2-normalized descriptors

Logo

技术共进,成长同行——讯飞AI开发者社区

更多推荐